success
This commit is contained in:
119
baselines/grasping/GSNet/dataset/generate_graspness.py
Executable file
119
baselines/grasping/GSNet/dataset/generate_graspness.py
Executable file
@@ -0,0 +1,119 @@
|
||||
import numpy as np
|
||||
import os
|
||||
from PIL import Image
|
||||
import scipy.io as scio
|
||||
import sys
|
||||
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
sys.path.append(ROOT_DIR)
|
||||
from utils.data_utils import get_workspace_mask, CameraInfo, create_point_cloud_from_depth_image
|
||||
from knn.knn_modules import knn
|
||||
import torch
|
||||
from graspnetAPI.utils.xmlhandler import xmlReader
|
||||
from graspnetAPI.utils.utils import get_obj_pose_list, transform_points
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--dataset_root', default=None, required=True)
|
||||
parser.add_argument('--camera_type', default='kinect', help='Camera split [realsense/kinect]')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
cfgs = parser.parse_args()
|
||||
dataset_root = cfgs.dataset_root # set dataset root
|
||||
camera_type = cfgs.camera_type # kinect / realsense
|
||||
save_path_root = os.path.join(dataset_root, 'graspness')
|
||||
|
||||
num_views, num_angles, num_depths = 300, 12, 4
|
||||
fric_coef_thresh = 0.8
|
||||
point_grasp_num = num_views * num_angles * num_depths
|
||||
for scene_id in range(100):
|
||||
save_path = os.path.join(save_path_root, 'scene_' + str(scene_id).zfill(4), camera_type)
|
||||
if not os.path.exists(save_path):
|
||||
os.makedirs(save_path)
|
||||
labels = np.load(
|
||||
os.path.join(dataset_root, 'collision_label', 'scene_' + str(scene_id).zfill(4), 'collision_labels.npz'))
|
||||
collision_dump = []
|
||||
for j in range(len(labels)):
|
||||
collision_dump.append(labels['arr_{}'.format(j)])
|
||||
|
||||
for ann_id in range(256):
|
||||
# get scene point cloud
|
||||
print('generating scene: {} ann: {}'.format(scene_id, ann_id))
|
||||
depth = np.array(Image.open(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4),
|
||||
camera_type, 'depth', str(ann_id).zfill(4) + '.png')))
|
||||
seg = np.array(Image.open(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4),
|
||||
camera_type, 'label', str(ann_id).zfill(4) + '.png')))
|
||||
meta = scio.loadmat(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4),
|
||||
camera_type, 'meta', str(ann_id).zfill(4) + '.mat'))
|
||||
intrinsic = meta['intrinsic_matrix']
|
||||
factor_depth = meta['factor_depth']
|
||||
camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2],
|
||||
factor_depth)
|
||||
cloud = create_point_cloud_from_depth_image(depth, camera, organized=True)
|
||||
|
||||
# remove outlier and get objectness label
|
||||
depth_mask = (depth > 0)
|
||||
camera_poses = np.load(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4),
|
||||
camera_type, 'camera_poses.npy'))
|
||||
camera_pose = camera_poses[ann_id]
|
||||
align_mat = np.load(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4),
|
||||
camera_type, 'cam0_wrt_table.npy'))
|
||||
trans = np.dot(align_mat, camera_pose)
|
||||
workspace_mask = get_workspace_mask(cloud, seg, trans=trans, organized=True, outlier=0.02)
|
||||
mask = (depth_mask & workspace_mask)
|
||||
cloud_masked = cloud[mask]
|
||||
objectness_label = seg[mask]
|
||||
|
||||
# get scene object and grasp info
|
||||
scene_reader = xmlReader(os.path.join(dataset_root, 'scenes', 'scene_' + str(scene_id).zfill(4),
|
||||
camera_type, 'annotations', '%04d.xml' % ann_id))
|
||||
pose_vectors = scene_reader.getposevectorlist()
|
||||
obj_list, pose_list = get_obj_pose_list(camera_pose, pose_vectors)
|
||||
grasp_labels = {}
|
||||
for i in obj_list:
|
||||
file = np.load(os.path.join(dataset_root, 'grasp_label', '{}_labels.npz'.format(str(i).zfill(3))))
|
||||
grasp_labels[i] = (file['points'].astype(np.float32), file['offsets'].astype(np.float32),
|
||||
file['scores'].astype(np.float32))
|
||||
|
||||
grasp_points = []
|
||||
grasp_points_graspness = []
|
||||
for i, (obj_idx, trans_) in enumerate(zip(obj_list, pose_list)):
|
||||
sampled_points, offsets, fric_coefs = grasp_labels[obj_idx]
|
||||
collision = collision_dump[i] # Npoints * num_views * num_angles * num_depths
|
||||
num_points = sampled_points.shape[0]
|
||||
|
||||
valid_grasp_mask = ((fric_coefs <= fric_coef_thresh) & (fric_coefs > 0) & ~collision)
|
||||
valid_grasp_mask = valid_grasp_mask.reshape(num_points, -1)
|
||||
graspness = np.sum(valid_grasp_mask, axis=1) / point_grasp_num
|
||||
target_points = transform_points(sampled_points, trans_)
|
||||
target_points = transform_points(target_points, np.linalg.inv(camera_pose)) # fix bug
|
||||
grasp_points.append(target_points)
|
||||
grasp_points_graspness.append(graspness.reshape(num_points, 1))
|
||||
grasp_points = np.vstack(grasp_points)
|
||||
grasp_points_graspness = np.vstack(grasp_points_graspness)
|
||||
|
||||
grasp_points = torch.from_numpy(grasp_points).cuda()
|
||||
grasp_points_graspness = torch.from_numpy(grasp_points_graspness).cuda()
|
||||
grasp_points = grasp_points.transpose(0, 1).contiguous().unsqueeze(0)
|
||||
|
||||
masked_points_num = cloud_masked.shape[0]
|
||||
cloud_masked_graspness = np.zeros((masked_points_num, 1))
|
||||
part_num = int(masked_points_num / 10000)
|
||||
for i in range(1, part_num + 2): # lack of cuda memory
|
||||
if i == part_num + 1:
|
||||
cloud_masked_partial = cloud_masked[10000 * part_num:]
|
||||
if len(cloud_masked_partial) == 0:
|
||||
break
|
||||
else:
|
||||
cloud_masked_partial = cloud_masked[10000 * (i - 1):(i * 10000)]
|
||||
cloud_masked_partial = torch.from_numpy(cloud_masked_partial).cuda()
|
||||
cloud_masked_partial = cloud_masked_partial.transpose(0, 1).contiguous().unsqueeze(0)
|
||||
nn_inds = knn(grasp_points, cloud_masked_partial, k=1).squeeze() - 1
|
||||
cloud_masked_graspness[10000 * (i - 1):(i * 10000)] = torch.index_select(
|
||||
grasp_points_graspness, 0, nn_inds).cpu().numpy()
|
||||
|
||||
max_graspness = np.max(cloud_masked_graspness)
|
||||
min_graspness = np.min(cloud_masked_graspness)
|
||||
cloud_masked_graspness = (cloud_masked_graspness - min_graspness) / (max_graspness - min_graspness)
|
||||
|
||||
np.save(os.path.join(save_path, str(ann_id).zfill(4) + '.npy'), cloud_masked_graspness)
|
268
baselines/grasping/GSNet/dataset/graspnet_dataset.py
Executable file
268
baselines/grasping/GSNet/dataset/graspnet_dataset.py
Executable file
@@ -0,0 +1,268 @@
|
||||
""" GraspNet dataset processing.
|
||||
Author: chenxi-wang
|
||||
"""
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import scipy.io as scio
|
||||
from PIL import Image
|
||||
|
||||
import torch
|
||||
import collections.abc as container_abcs
|
||||
from torch.utils.data import Dataset
|
||||
from tqdm import tqdm
|
||||
import MinkowskiEngine as ME
|
||||
from data_utils import CameraInfo, transform_point_cloud, create_point_cloud_from_depth_image, get_workspace_mask
|
||||
|
||||
|
||||
class GraspNetDataset(Dataset):
|
||||
def __init__(self, root, grasp_labels=None, camera='kinect', split='train', num_points=20000,
|
||||
voxel_size=0.005, remove_outlier=True, augment=False, load_label=True):
|
||||
assert (num_points <= 50000)
|
||||
self.root = root
|
||||
self.split = split
|
||||
self.voxel_size = voxel_size
|
||||
self.num_points = num_points
|
||||
self.remove_outlier = remove_outlier
|
||||
self.grasp_labels = grasp_labels
|
||||
self.camera = camera
|
||||
self.augment = augment
|
||||
self.load_label = load_label
|
||||
self.collision_labels = {}
|
||||
|
||||
if split == 'train':
|
||||
self.sceneIds = list(range(100))
|
||||
elif split == 'test':
|
||||
self.sceneIds = list(range(100, 190))
|
||||
elif split == 'test_seen':
|
||||
self.sceneIds = list(range(100, 130))
|
||||
elif split == 'test_similar':
|
||||
self.sceneIds = list(range(130, 160))
|
||||
elif split == 'test_novel':
|
||||
self.sceneIds = list(range(160, 190))
|
||||
self.sceneIds = ['scene_{}'.format(str(x).zfill(4)) for x in self.sceneIds]
|
||||
|
||||
self.depthpath = []
|
||||
self.labelpath = []
|
||||
self.metapath = []
|
||||
self.scenename = []
|
||||
self.frameid = []
|
||||
self.graspnesspath = []
|
||||
for x in tqdm(self.sceneIds, desc='Loading data path and collision labels...'):
|
||||
for img_num in range(256):
|
||||
self.depthpath.append(os.path.join(root, 'scenes', x, camera, 'depth', str(img_num).zfill(4) + '.png'))
|
||||
self.labelpath.append(os.path.join(root, 'scenes', x, camera, 'label', str(img_num).zfill(4) + '.png'))
|
||||
self.metapath.append(os.path.join(root, 'scenes', x, camera, 'meta', str(img_num).zfill(4) + '.mat'))
|
||||
self.graspnesspath.append(os.path.join(root, 'graspness', x, camera, str(img_num).zfill(4) + '.npy'))
|
||||
self.scenename.append(x.strip())
|
||||
self.frameid.append(img_num)
|
||||
if self.load_label:
|
||||
collision_labels = np.load(os.path.join(root, 'collision_label', x.strip(), 'collision_labels.npz'))
|
||||
self.collision_labels[x.strip()] = {}
|
||||
for i in range(len(collision_labels)):
|
||||
self.collision_labels[x.strip()][i] = collision_labels['arr_{}'.format(i)]
|
||||
|
||||
def scene_list(self):
|
||||
return self.scenename
|
||||
|
||||
def __len__(self):
|
||||
return len(self.depthpath)
|
||||
|
||||
def augment_data(self, point_clouds, object_poses_list):
|
||||
# Flipping along the YZ plane
|
||||
if np.random.random() > 0.5:
|
||||
flip_mat = np.array([[-1, 0, 0],
|
||||
[0, 1, 0],
|
||||
[0, 0, 1]])
|
||||
point_clouds = transform_point_cloud(point_clouds, flip_mat, '3x3')
|
||||
for i in range(len(object_poses_list)):
|
||||
object_poses_list[i] = np.dot(flip_mat, object_poses_list[i]).astype(np.float32)
|
||||
|
||||
# Rotation along up-axis/Z-axis
|
||||
rot_angle = (np.random.random() * np.pi / 3) - np.pi / 6 # -30 ~ +30 degree
|
||||
c, s = np.cos(rot_angle), np.sin(rot_angle)
|
||||
rot_mat = np.array([[1, 0, 0],
|
||||
[0, c, -s],
|
||||
[0, s, c]])
|
||||
point_clouds = transform_point_cloud(point_clouds, rot_mat, '3x3')
|
||||
for i in range(len(object_poses_list)):
|
||||
object_poses_list[i] = np.dot(rot_mat, object_poses_list[i]).astype(np.float32)
|
||||
|
||||
return point_clouds, object_poses_list
|
||||
|
||||
def __getitem__(self, index):
|
||||
if self.load_label:
|
||||
return self.get_data_label(index)
|
||||
else:
|
||||
return self.get_data(index)
|
||||
|
||||
def get_data(self, index, return_raw_cloud=False):
|
||||
depth = np.array(Image.open(self.depthpath[index]))
|
||||
seg = np.array(Image.open(self.labelpath[index]))
|
||||
meta = scio.loadmat(self.metapath[index])
|
||||
scene = self.scenename[index]
|
||||
try:
|
||||
intrinsic = meta['intrinsic_matrix']
|
||||
factor_depth = meta['factor_depth']
|
||||
except Exception as e:
|
||||
print(repr(e))
|
||||
print(scene)
|
||||
camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2],
|
||||
factor_depth)
|
||||
|
||||
# generate cloud
|
||||
cloud = create_point_cloud_from_depth_image(depth, camera, organized=True)
|
||||
|
||||
# get valid points
|
||||
depth_mask = (depth > 0)
|
||||
if self.remove_outlier:
|
||||
camera_poses = np.load(os.path.join(self.root, 'scenes', scene, self.camera, 'camera_poses.npy'))
|
||||
align_mat = np.load(os.path.join(self.root, 'scenes', scene, self.camera, 'cam0_wrt_table.npy'))
|
||||
trans = np.dot(align_mat, camera_poses[self.frameid[index]])
|
||||
workspace_mask = get_workspace_mask(cloud, seg, trans=trans, organized=True, outlier=0.02)
|
||||
mask = (depth_mask & workspace_mask)
|
||||
else:
|
||||
mask = depth_mask
|
||||
cloud_masked = cloud[mask]
|
||||
|
||||
if return_raw_cloud:
|
||||
return cloud_masked
|
||||
# sample points random
|
||||
if len(cloud_masked) >= self.num_points:
|
||||
idxs = np.random.choice(len(cloud_masked), self.num_points, replace=False)
|
||||
else:
|
||||
idxs1 = np.arange(len(cloud_masked))
|
||||
idxs2 = np.random.choice(len(cloud_masked), self.num_points - len(cloud_masked), replace=True)
|
||||
idxs = np.concatenate([idxs1, idxs2], axis=0)
|
||||
cloud_sampled = cloud_masked[idxs]
|
||||
|
||||
ret_dict = {'point_clouds': cloud_sampled.astype(np.float32),
|
||||
'coors': cloud_sampled.astype(np.float32) / self.voxel_size,
|
||||
'feats': np.ones_like(cloud_sampled).astype(np.float32),
|
||||
}
|
||||
return ret_dict
|
||||
|
||||
def get_data_label(self, index):
|
||||
depth = np.array(Image.open(self.depthpath[index]))
|
||||
seg = np.array(Image.open(self.labelpath[index]))
|
||||
meta = scio.loadmat(self.metapath[index])
|
||||
graspness = np.load(self.graspnesspath[index]) # for each point in workspace masked point cloud
|
||||
scene = self.scenename[index]
|
||||
try:
|
||||
obj_idxs = meta['cls_indexes'].flatten().astype(np.int32)
|
||||
poses = meta['poses']
|
||||
intrinsic = meta['intrinsic_matrix']
|
||||
factor_depth = meta['factor_depth']
|
||||
except Exception as e:
|
||||
print(repr(e))
|
||||
print(scene)
|
||||
camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2],
|
||||
factor_depth)
|
||||
|
||||
# generate cloud
|
||||
cloud = create_point_cloud_from_depth_image(depth, camera, organized=True)
|
||||
|
||||
# get valid points
|
||||
depth_mask = (depth > 0)
|
||||
if self.remove_outlier:
|
||||
camera_poses = np.load(os.path.join(self.root, 'scenes', scene, self.camera, 'camera_poses.npy'))
|
||||
align_mat = np.load(os.path.join(self.root, 'scenes', scene, self.camera, 'cam0_wrt_table.npy'))
|
||||
trans = np.dot(align_mat, camera_poses[self.frameid[index]])
|
||||
workspace_mask = get_workspace_mask(cloud, seg, trans=trans, organized=True, outlier=0.02)
|
||||
mask = (depth_mask & workspace_mask)
|
||||
else:
|
||||
mask = depth_mask
|
||||
cloud_masked = cloud[mask]
|
||||
seg_masked = seg[mask]
|
||||
|
||||
# sample points
|
||||
if len(cloud_masked) >= self.num_points:
|
||||
idxs = np.random.choice(len(cloud_masked), self.num_points, replace=False)
|
||||
else:
|
||||
idxs1 = np.arange(len(cloud_masked))
|
||||
idxs2 = np.random.choice(len(cloud_masked), self.num_points - len(cloud_masked), replace=True)
|
||||
idxs = np.concatenate([idxs1, idxs2], axis=0)
|
||||
cloud_sampled = cloud_masked[idxs]
|
||||
seg_sampled = seg_masked[idxs]
|
||||
graspness_sampled = graspness[idxs]
|
||||
objectness_label = seg_sampled.copy()
|
||||
|
||||
objectness_label[objectness_label > 1] = 1
|
||||
|
||||
object_poses_list = []
|
||||
grasp_points_list = []
|
||||
grasp_widths_list = []
|
||||
grasp_scores_list = []
|
||||
for i, obj_idx in enumerate(obj_idxs):
|
||||
if (seg_sampled == obj_idx).sum() < 50:
|
||||
continue
|
||||
object_poses_list.append(poses[:, :, i])
|
||||
points, widths, scores = self.grasp_labels[obj_idx]
|
||||
collision = self.collision_labels[scene][i] # (Np, V, A, D)
|
||||
|
||||
idxs = np.random.choice(len(points), min(max(int(len(points) / 4), 300), len(points)), replace=False)
|
||||
grasp_points_list.append(points[idxs])
|
||||
grasp_widths_list.append(widths[idxs])
|
||||
collision = collision[idxs].copy()
|
||||
scores = scores[idxs].copy()
|
||||
scores[collision] = 0
|
||||
grasp_scores_list.append(scores)
|
||||
|
||||
if self.augment:
|
||||
cloud_sampled, object_poses_list = self.augment_data(cloud_sampled, object_poses_list)
|
||||
from ipdb import set_trace; set_trace()
|
||||
ret_dict = {'point_clouds': cloud_sampled.astype(np.float32),
|
||||
'coors': cloud_sampled.astype(np.float32) / self.voxel_size,
|
||||
'feats': np.ones_like(cloud_sampled).astype(np.float32),
|
||||
'graspness_label': graspness_sampled.astype(np.float32),
|
||||
'objectness_label': objectness_label.astype(np.int64),
|
||||
'object_poses_list': object_poses_list,
|
||||
'grasp_points_list': grasp_points_list,
|
||||
'grasp_widths_list': grasp_widths_list,
|
||||
'grasp_scores_list': grasp_scores_list}
|
||||
set_trace()
|
||||
return ret_dict
|
||||
|
||||
|
||||
def load_grasp_labels(root):
|
||||
obj_names = list(range(1, 89))
|
||||
grasp_labels = {}
|
||||
for obj_name in tqdm(obj_names, desc='Loading grasping labels...'):
|
||||
label = np.load(os.path.join(root, 'grasp_label_simplified', '{}_labels.npz'.format(str(obj_name - 1).zfill(3))))
|
||||
grasp_labels[obj_name] = (label['points'].astype(np.float32), label['width'].astype(np.float32),
|
||||
label['scores'].astype(np.float32))
|
||||
|
||||
return grasp_labels
|
||||
|
||||
|
||||
def minkowski_collate_fn(list_data):
|
||||
coordinates_batch, features_batch = ME.utils.sparse_collate([d["coors"] for d in list_data],
|
||||
[d["feats"] for d in list_data])
|
||||
frame_path_batch = [d["frame_path"] for d in list_data]
|
||||
object_name_batch = [d["object_name"] for d in list_data]
|
||||
obj_pcl_dict = [d["obj_pcl_dict"] for d in list_data]
|
||||
coordinates_batch = np.ascontiguousarray(coordinates_batch, dtype=np.int32)
|
||||
coordinates_batch, features_batch, _, quantize2original = ME.utils.sparse_quantize(
|
||||
coordinates_batch, features_batch, return_index=True, return_inverse=True)
|
||||
res = {
|
||||
"coors": coordinates_batch,
|
||||
"feats": features_batch,
|
||||
"quantize2original": quantize2original,
|
||||
"obj_pcl_dict": obj_pcl_dict,
|
||||
"frame_path":frame_path_batch,
|
||||
"object_name": object_name_batch
|
||||
}
|
||||
|
||||
def collate_fn_(batch):
|
||||
if type(batch[0]).__module__ == 'numpy':
|
||||
return torch.stack([torch.from_numpy(b) for b in batch], 0)
|
||||
elif isinstance(batch[0], container_abcs.Sequence):
|
||||
return [[torch.from_numpy(sample) for sample in b] for b in batch]
|
||||
elif isinstance(batch[0], container_abcs.Mapping):
|
||||
for key in batch[0]:
|
||||
if key == 'coors' or key == 'feats' or key == "frame_path" or key == "object_name" or key == "obj_pcl_dict":
|
||||
continue
|
||||
res[key] = collate_fn_([d[key] for d in batch])
|
||||
return res
|
||||
res = collate_fn_(list_data)
|
||||
return res
|
43
baselines/grasping/GSNet/dataset/simplify_dataset.py
Executable file
43
baselines/grasping/GSNet/dataset/simplify_dataset.py
Executable file
@@ -0,0 +1,43 @@
|
||||
import numpy as np
|
||||
import os
|
||||
import argparse
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--dataset_root', default=None, required=True)
|
||||
|
||||
|
||||
def simplify_grasp_labels(root, save_path):
|
||||
"""
|
||||
original dataset grasp_label files have redundant data, We can significantly save the memory cost
|
||||
"""
|
||||
obj_names = list(range(88))
|
||||
if not os.path.exists(save_path):
|
||||
os.makedirs(save_path)
|
||||
for i in obj_names:
|
||||
print('\nsimplifying object {}:'.format(i))
|
||||
label = np.load(os.path.join(root, 'grasp_label', '{}_labels.npz'.format(str(i).zfill(3))))
|
||||
# point_num = len(label['points'])
|
||||
print('original shape: ', label['points'].shape, label['offsets'].shape, label['scores'].shape)
|
||||
# if point_num > 4820:
|
||||
# idxs = np.random.choice(point_num, 4820, False)
|
||||
# points = label['points'][idxs]
|
||||
# offsets = label['offsets'][idxs]
|
||||
# scores = label['scores'][idxs]
|
||||
# print('Warning!!! down sample object {}'.format(i))
|
||||
# else:
|
||||
points = label['points']
|
||||
scores = label['scores']
|
||||
offsets = label['offsets']
|
||||
width = offsets[:, :, :, :, 2]
|
||||
print('after simplify, offset shape: ', points.shape, scores.shape, width.shape)
|
||||
np.savez(os.path.join(save_path, '{}_labels.npz'.format(str(i).zfill(3))),
|
||||
points=points, scores=scores, width=width)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
cfgs = parser.parse_args()
|
||||
root = cfgs.dataset_root # set root and save path
|
||||
save_path = os.path.join(root, 'grasp_label_simplified')
|
||||
simplify_grasp_labels(root, save_path)
|
||||
|
42
baselines/grasping/GSNet/dataset/vis_graspness.py
Executable file
42
baselines/grasping/GSNet/dataset/vis_graspness.py
Executable file
@@ -0,0 +1,42 @@
|
||||
import open3d as o3d
|
||||
import scipy.io as scio
|
||||
from PIL import Image
|
||||
import os
|
||||
import numpy as np
|
||||
import sys
|
||||
ROOT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
sys.path.append(ROOT_DIR)
|
||||
from utils.data_utils import get_workspace_mask, CameraInfo, create_point_cloud_from_depth_image
|
||||
|
||||
data_path = '/media/bot/980A6F5E0A6F38801/datasets/graspnet/'
|
||||
scene_id = 'scene_0060'
|
||||
ann_id = '0000'
|
||||
camera_type = 'realsense'
|
||||
color = np.array(Image.open(os.path.join(data_path, 'scenes', scene_id, camera_type, 'rgb', ann_id + '.png')), dtype=np.float32) / 255.0
|
||||
depth = np.array(Image.open(os.path.join(data_path, 'scenes', scene_id, camera_type, 'depth', ann_id + '.png')))
|
||||
seg = np.array(Image.open(os.path.join(data_path, 'scenes', scene_id, camera_type, 'label', ann_id + '.png')))
|
||||
meta = scio.loadmat(os.path.join(data_path, 'scenes', scene_id, camera_type, 'meta', ann_id + '.mat'))
|
||||
intrinsic = meta['intrinsic_matrix']
|
||||
factor_depth = meta['factor_depth']
|
||||
camera = CameraInfo(1280.0, 720.0, intrinsic[0][0], intrinsic[1][1], intrinsic[0][2], intrinsic[1][2], factor_depth)
|
||||
point_cloud = create_point_cloud_from_depth_image(depth, camera, organized=True)
|
||||
depth_mask = (depth > 0)
|
||||
camera_poses = np.load(os.path.join(data_path, 'scenes', scene_id, camera_type, 'camera_poses.npy'))
|
||||
align_mat = np.load(os.path.join(data_path, 'scenes', scene_id, camera_type, 'cam0_wrt_table.npy'))
|
||||
trans = np.dot(align_mat, camera_poses[int(ann_id)])
|
||||
workspace_mask = get_workspace_mask(point_cloud, seg, trans=trans, organized=True, outlier=0.02)
|
||||
mask = (depth_mask & workspace_mask)
|
||||
point_cloud = point_cloud[mask]
|
||||
color = color[mask]
|
||||
seg = seg[mask]
|
||||
|
||||
graspness_full = np.load(os.path.join(data_path, 'graspness', scene_id, camera_type, ann_id + '.npy')).squeeze()
|
||||
graspness_full[seg == 0] = 0.
|
||||
print('graspness full scene: ', graspness_full.shape, (graspness_full > 0.1).sum())
|
||||
color[graspness_full > 0.1] = [0., 1., 0.]
|
||||
|
||||
|
||||
cloud = o3d.geometry.PointCloud()
|
||||
cloud.points = o3d.utility.Vector3dVector(point_cloud.astype(np.float32))
|
||||
cloud.colors = o3d.utility.Vector3dVector(color.astype(np.float32))
|
||||
o3d.visualization.draw_geometries([cloud])
|
Reference in New Issue
Block a user