This commit is contained in:
2024-10-09 16:13:22 +00:00
commit 0ea3f048dc
437 changed files with 44406 additions and 0 deletions

View File

@@ -0,0 +1,162 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from . import pointnet2_utils
from . import pytorch_utils as pt_utils
from typing import List
class _PointnetSAModuleBase(nn.Module):
def __init__(self):
super().__init__()
self.npoint = None
self.groupers = None
self.mlps = None
self.pool_method = 'max_pool'
def forward(self, xyz: torch.Tensor, features: torch.Tensor = None, new_xyz=None) -> (torch.Tensor, torch.Tensor):
"""
:param xyz: (B, N, 3) tensor of the xyz coordinates of the features
:param features: (B, N, C) tensor of the descriptors of the the features
:param new_xyz:
:return:
new_xyz: (B, npoint, 3) tensor of the new features' xyz
new_features: (B, npoint, \sum_k(mlps[k][-1])) tensor of the new_features descriptors
"""
new_features_list = []
xyz_flipped = xyz.transpose(1, 2).contiguous()
if new_xyz is None:
new_xyz = pointnet2_utils.gather_operation(
xyz_flipped,
pointnet2_utils.furthest_point_sample(xyz, self.npoint)
).transpose(1, 2).contiguous() if self.npoint is not None else None
for i in range(len(self.groupers)):
new_features = self.groupers[i](xyz, new_xyz, features) # (B, C, npoint, nsample)
new_features = self.mlps[i](new_features) # (B, mlp[-1], npoint, nsample)
if self.pool_method == 'max_pool':
new_features = F.max_pool2d(
new_features, kernel_size=[1, new_features.size(3)]
) # (B, mlp[-1], npoint, 1)
elif self.pool_method == 'avg_pool':
new_features = F.avg_pool2d(
new_features, kernel_size=[1, new_features.size(3)]
) # (B, mlp[-1], npoint, 1)
else:
raise NotImplementedError
new_features = new_features.squeeze(-1) # (B, mlp[-1], npoint)
new_features_list.append(new_features)
return new_xyz, torch.cat(new_features_list, dim=1)
class PointnetSAModuleMSG(_PointnetSAModuleBase):
"""Pointnet set abstraction layer with multiscale grouping"""
def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True,
use_xyz: bool = True, pool_method='max_pool', instance_norm=False):
"""
:param npoint: int
:param radii: list of float, list of radii to group with
:param nsamples: list of int, number of samples in each ball query
:param mlps: list of list of int, spec of the pointnet before the global pooling for each scale
:param bn: whether to use batchnorm
:param use_xyz:
:param pool_method: max_pool / avg_pool
:param instance_norm: whether to use instance_norm
"""
super().__init__()
assert len(radii) == len(nsamples) == len(mlps)
self.npoint = npoint
self.groupers = nn.ModuleList()
self.mlps = nn.ModuleList()
for i in range(len(radii)):
radius = radii[i]
nsample = nsamples[i]
self.groupers.append(
pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz)
if npoint is not None else pointnet2_utils.GroupAll(use_xyz)
)
mlp_spec = mlps[i]
if use_xyz:
mlp_spec[0] += 3
self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm))
self.pool_method = pool_method
class PointnetSAModule(PointnetSAModuleMSG):
"""Pointnet set abstraction layer"""
def __init__(self, *, mlp: List[int], npoint: int = None, radius: float = None, nsample: int = None,
bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False):
"""
:param mlp: list of int, spec of the pointnet before the global max_pool
:param npoint: int, number of features
:param radius: float, radius of ball
:param nsample: int, number of samples in the ball query
:param bn: whether to use batchnorm
:param use_xyz:
:param pool_method: max_pool / avg_pool
:param instance_norm: whether to use instance_norm
"""
super().__init__(
mlps=[mlp], npoint=npoint, radii=[radius], nsamples=[nsample], bn=bn, use_xyz=use_xyz,
pool_method=pool_method, instance_norm=instance_norm
)
class PointnetFPModule(nn.Module):
r"""Propigates the features of one set to another"""
def __init__(self, *, mlp: List[int], bn: bool = True):
"""
:param mlp: list of int
:param bn: whether to use batchnorm
"""
super().__init__()
self.mlp = pt_utils.SharedMLP(mlp, bn=bn)
def forward(
self, unknown: torch.Tensor, known: torch.Tensor, unknow_feats: torch.Tensor, known_feats: torch.Tensor
) -> torch.Tensor:
"""
:param unknown: (B, n, 3) tensor of the xyz positions of the unknown features
:param known: (B, m, 3) tensor of the xyz positions of the known features
:param unknow_feats: (B, C1, n) tensor of the features to be propigated to
:param known_feats: (B, C2, m) tensor of features to be propigated
:return:
new_features: (B, mlp[-1], n) tensor of the features of the unknown features
"""
if known is not None:
dist, idx = pointnet2_utils.three_nn(unknown, known)
dist_recip = 1.0 / (dist + 1e-8)
norm = torch.sum(dist_recip, dim=2, keepdim=True)
weight = dist_recip / norm
interpolated_feats = pointnet2_utils.three_interpolate(known_feats, idx, weight)
else:
interpolated_feats = known_feats.expand(*known_feats.size()[0:2], unknown.size(1))
if unknow_feats is not None:
new_features = torch.cat([interpolated_feats, unknow_feats], dim=1) # (B, C2 + C1, n)
else:
new_features = interpolated_feats
new_features = new_features.unsqueeze(-1)
new_features = self.mlp(new_features)
return new_features.squeeze(-1)
if __name__ == "__main__":
pass

View File

@@ -0,0 +1,291 @@
import torch
from torch.autograd import Variable
from torch.autograd import Function
import torch.nn as nn
from typing import Tuple
import sys
import pointnet2_cuda as pointnet2
class FurthestPointSampling(Function):
@staticmethod
def forward(ctx, xyz: torch.Tensor, npoint: int) -> torch.Tensor:
"""
Uses iterative furthest point sampling to select a set of npoint features that have the largest
minimum distance
:param ctx:
:param xyz: (B, N, 3) where N > npoint
:param npoint: int, number of features in the sampled set
:return:
output: (B, npoint) tensor containing the set
"""
assert xyz.is_contiguous()
B, N, _ = xyz.size()
output = torch.cuda.IntTensor(B, npoint)
temp = torch.cuda.FloatTensor(B, N).fill_(1e10)
pointnet2.furthest_point_sampling_wrapper(B, N, npoint, xyz, temp, output)
return output
@staticmethod
def backward(xyz, a=None):
return None, None
furthest_point_sample = FurthestPointSampling.apply
class GatherOperation(Function):
@staticmethod
def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor:
"""
:param ctx:
:param features: (B, C, N)
:param idx: (B, npoint) index tensor of the features to gather
:return:
output: (B, C, npoint)
"""
assert features.is_contiguous()
assert idx.is_contiguous()
B, npoint = idx.size()
_, C, N = features.size()
output = torch.cuda.FloatTensor(B, C, npoint)
pointnet2.gather_points_wrapper(B, C, N, npoint, features, idx, output)
ctx.for_backwards = (idx, C, N)
return output
@staticmethod
def backward(ctx, grad_out):
idx, C, N = ctx.for_backwards
B, npoint = idx.size()
grad_features = Variable(torch.cuda.FloatTensor(B, C, N).zero_())
grad_out_data = grad_out.data.contiguous()
pointnet2.gather_points_grad_wrapper(B, C, N, npoint, grad_out_data, idx, grad_features.data)
return grad_features, None
gather_operation = GatherOperation.apply
class ThreeNN(Function):
@staticmethod
def forward(ctx, unknown: torch.Tensor, known: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Find the three nearest neighbors of unknown in known
:param ctx:
:param unknown: (B, N, 3)
:param known: (B, M, 3)
:return:
dist: (B, N, 3) l2 distance to the three nearest neighbors
idx: (B, N, 3) index of 3 nearest neighbors
"""
assert unknown.is_contiguous()
assert known.is_contiguous()
B, N, _ = unknown.size()
m = known.size(1)
dist2 = torch.cuda.FloatTensor(B, N, 3)
idx = torch.cuda.IntTensor(B, N, 3)
pointnet2.three_nn_wrapper(B, N, m, unknown, known, dist2, idx)
return torch.sqrt(dist2), idx
@staticmethod
def backward(ctx, a=None, b=None):
return None, None
three_nn = ThreeNN.apply
class ThreeInterpolate(Function):
@staticmethod
def forward(ctx, features: torch.Tensor, idx: torch.Tensor, weight: torch.Tensor) -> torch.Tensor:
"""
Performs weight linear interpolation on 3 features
:param ctx:
:param features: (B, C, M) Features descriptors to be interpolated from
:param idx: (B, n, 3) three nearest neighbors of the target features in features
:param weight: (B, n, 3) weights
:return:
output: (B, C, N) tensor of the interpolated features
"""
assert features.is_contiguous()
assert idx.is_contiguous()
assert weight.is_contiguous()
B, c, m = features.size()
n = idx.size(1)
ctx.three_interpolate_for_backward = (idx, weight, m)
output = torch.cuda.FloatTensor(B, c, n)
pointnet2.three_interpolate_wrapper(B, c, m, n, features, idx, weight, output)
return output
@staticmethod
def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
:param ctx:
:param grad_out: (B, C, N) tensor with gradients of outputs
:return:
grad_features: (B, C, M) tensor with gradients of features
None:
None:
"""
idx, weight, m = ctx.three_interpolate_for_backward
B, c, n = grad_out.size()
grad_features = Variable(torch.cuda.FloatTensor(B, c, m).zero_())
grad_out_data = grad_out.data.contiguous()
pointnet2.three_interpolate_grad_wrapper(B, c, n, m, grad_out_data, idx, weight, grad_features.data)
return grad_features, None, None
three_interpolate = ThreeInterpolate.apply
class GroupingOperation(Function):
@staticmethod
def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor:
"""
:param ctx:
:param features: (B, C, N) tensor of features to group
:param idx: (B, npoint, nsample) tensor containing the indicies of features to group with
:return:
output: (B, C, npoint, nsample) tensor
"""
assert features.is_contiguous()
assert idx.is_contiguous()
B, nfeatures, nsample = idx.size()
_, C, N = features.size()
output = torch.cuda.FloatTensor(B, C, nfeatures, nsample)
pointnet2.group_points_wrapper(B, C, N, nfeatures, nsample, features, idx, output)
ctx.for_backwards = (idx, N)
return output
@staticmethod
def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
"""
:param ctx:
:param grad_out: (B, C, npoint, nsample) tensor of the gradients of the output from forward
:return:
grad_features: (B, C, N) gradient of the features
"""
idx, N = ctx.for_backwards
B, C, npoint, nsample = grad_out.size()
grad_features = Variable(torch.cuda.FloatTensor(B, C, N).zero_())
grad_out_data = grad_out.data.contiguous()
pointnet2.group_points_grad_wrapper(B, C, N, npoint, nsample, grad_out_data, idx, grad_features.data)
return grad_features, None
grouping_operation = GroupingOperation.apply
class BallQuery(Function):
@staticmethod
def forward(ctx, radius: float, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor) -> torch.Tensor:
"""
:param ctx:
:param radius: float, radius of the balls
:param nsample: int, maximum number of features in the balls
:param xyz: (B, N, 3) xyz coordinates of the features
:param new_xyz: (B, npoint, 3) centers of the ball query
:return:
idx: (B, npoint, nsample) tensor with the indicies of the features that form the query balls
"""
assert new_xyz.is_contiguous()
assert xyz.is_contiguous()
B, N, _ = xyz.size()
npoint = new_xyz.size(1)
idx = torch.cuda.IntTensor(B, npoint, nsample).zero_()
pointnet2.ball_query_wrapper(B, N, npoint, radius, nsample, new_xyz, xyz, idx)
return idx
@staticmethod
def backward(ctx, a=None):
return None, None, None, None
ball_query = BallQuery.apply
class QueryAndGroup(nn.Module):
def __init__(self, radius: float, nsample: int, use_xyz: bool = True):
"""
:param radius: float, radius of ball
:param nsample: int, maximum number of features to gather in the ball
:param use_xyz:
"""
super().__init__()
self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz
def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor, features: torch.Tensor = None) -> Tuple[torch.Tensor]:
"""
:param xyz: (B, N, 3) xyz coordinates of the features
:param new_xyz: (B, npoint, 3) centroids
:param features: (B, C, N) descriptors of the features
:return:
new_features: (B, 3 + C, npoint, nsample)
"""
idx = ball_query(self.radius, self.nsample, xyz, new_xyz)
xyz_trans = xyz.transpose(1, 2).contiguous()
grouped_xyz = grouping_operation(xyz_trans, idx) # (B, 3, npoint, nsample)
grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1)
if features is not None:
grouped_features = grouping_operation(features, idx)
if self.use_xyz:
new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (B, C + 3, npoint, nsample)
else:
new_features = grouped_features
else:
assert self.use_xyz, "Cannot have not features and not use xyz as a feature!"
new_features = grouped_xyz
return new_features
class GroupAll(nn.Module):
def __init__(self, use_xyz: bool = True):
super().__init__()
self.use_xyz = use_xyz
def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor, features: torch.Tensor = None):
"""
:param xyz: (B, N, 3) xyz coordinates of the features
:param new_xyz: ignored
:param features: (B, C, N) descriptors of the features
:return:
new_features: (B, C + 3, 1, N)
"""
grouped_xyz = xyz.transpose(1, 2).unsqueeze(2)
if features is not None:
grouped_features = features.unsqueeze(2)
if self.use_xyz:
new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (B, 3 + C, 1, N)
else:
new_features = grouped_features
else:
new_features = grouped_xyz
return new_features

View File

@@ -0,0 +1,236 @@
import torch.nn as nn
from typing import List, Tuple
class SharedMLP(nn.Sequential):
def __init__(
self,
args: List[int],
*,
bn: bool = False,
activation=nn.ReLU(inplace=True),
preact: bool = False,
first: bool = False,
name: str = "",
instance_norm: bool = False,
):
super().__init__()
for i in range(len(args) - 1):
self.add_module(
name + 'layer{}'.format(i),
Conv2d(
args[i],
args[i + 1],
bn=(not first or not preact or (i != 0)) and bn,
activation=activation
if (not first or not preact or (i != 0)) else None,
preact=preact,
instance_norm=instance_norm
)
)
class _ConvBase(nn.Sequential):
def __init__(
self,
in_size,
out_size,
kernel_size,
stride,
padding,
activation,
bn,
init,
conv=None,
batch_norm=None,
bias=True,
preact=False,
name="",
instance_norm=False,
instance_norm_func=None
):
super().__init__()
bias = bias and (not bn)
conv_unit = conv(
in_size,
out_size,
kernel_size=kernel_size,
stride=stride,
padding=padding,
bias=bias
)
init(conv_unit.weight)
if bias:
nn.init.constant_(conv_unit.bias, 0)
if bn:
if not preact:
bn_unit = batch_norm(out_size)
else:
bn_unit = batch_norm(in_size)
if instance_norm:
if not preact:
in_unit = instance_norm_func(out_size, affine=False, track_running_stats=False)
else:
in_unit = instance_norm_func(in_size, affine=False, track_running_stats=False)
if preact:
if bn:
self.add_module(name + 'bn', bn_unit)
if activation is not None:
self.add_module(name + 'activation', activation)
if not bn and instance_norm:
self.add_module(name + 'in', in_unit)
self.add_module(name + 'conv', conv_unit)
if not preact:
if bn:
self.add_module(name + 'bn', bn_unit)
if activation is not None:
self.add_module(name + 'activation', activation)
if not bn and instance_norm:
self.add_module(name + 'in', in_unit)
class _BNBase(nn.Sequential):
def __init__(self, in_size, batch_norm=None, name=""):
super().__init__()
self.add_module(name + "bn", batch_norm(in_size))
nn.init.constant_(self[0].weight, 1.0)
nn.init.constant_(self[0].bias, 0)
class BatchNorm1d(_BNBase):
def __init__(self, in_size: int, *, name: str = ""):
super().__init__(in_size, batch_norm=nn.BatchNorm1d, name=name)
class BatchNorm2d(_BNBase):
def __init__(self, in_size: int, name: str = ""):
super().__init__(in_size, batch_norm=nn.BatchNorm2d, name=name)
class Conv1d(_ConvBase):
def __init__(
self,
in_size: int,
out_size: int,
*,
kernel_size: int = 1,
stride: int = 1,
padding: int = 0,
activation=nn.ReLU(inplace=True),
bn: bool = False,
init=nn.init.kaiming_normal_,
bias: bool = True,
preact: bool = False,
name: str = "",
instance_norm=False
):
super().__init__(
in_size,
out_size,
kernel_size,
stride,
padding,
activation,
bn,
init,
conv=nn.Conv1d,
batch_norm=BatchNorm1d,
bias=bias,
preact=preact,
name=name,
instance_norm=instance_norm,
instance_norm_func=nn.InstanceNorm1d
)
class Conv2d(_ConvBase):
def __init__(
self,
in_size: int,
out_size: int,
*,
kernel_size: Tuple[int, int] = (1, 1),
stride: Tuple[int, int] = (1, 1),
padding: Tuple[int, int] = (0, 0),
activation=nn.ReLU(inplace=True),
bn: bool = False,
init=nn.init.kaiming_normal_,
bias: bool = True,
preact: bool = False,
name: str = "",
instance_norm=False
):
super().__init__(
in_size,
out_size,
kernel_size,
stride,
padding,
activation,
bn,
init,
conv=nn.Conv2d,
batch_norm=BatchNorm2d,
bias=bias,
preact=preact,
name=name,
instance_norm=instance_norm,
instance_norm_func=nn.InstanceNorm2d
)
class FC(nn.Sequential):
def __init__(
self,
in_size: int,
out_size: int,
*,
activation=nn.ReLU(inplace=True),
bn: bool = False,
init=None,
preact: bool = False,
name: str = ""
):
super().__init__()
fc = nn.Linear(in_size, out_size, bias=not bn)
if init is not None:
init(fc.weight)
if not bn:
nn.init.constant(fc.bias, 0)
if preact:
if bn:
self.add_module(name + 'bn', BatchNorm1d(in_size))
if activation is not None:
self.add_module(name + 'activation', activation)
self.add_module(name + 'fc', fc)
if not preact:
if bn:
self.add_module(name + 'bn', BatchNorm1d(out_size))
if activation is not None:
self.add_module(name + 'activation', activation)

View File

@@ -0,0 +1,23 @@
from setuptools import setup
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
setup(
name='pointnet2',
ext_modules=[
CUDAExtension('pointnet2_cuda', [
'src/pointnet2_api.cpp',
'src/ball_query.cpp',
'src/ball_query_gpu.cu',
'src/group_points.cpp',
'src/group_points_gpu.cu',
'src/interpolate.cpp',
'src/interpolate_gpu.cu',
'src/sampling.cpp',
'src/sampling_gpu.cu',
],
extra_compile_args={'cxx': ['-g'],
'nvcc': ['-O2']})
],
cmdclass={'build_ext': BuildExtension}
)

View File

@@ -0,0 +1,28 @@
#include <torch/serialize/tensor.h>
#include <vector>
// #include <THC/THC.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "ball_query_gpu.h"
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAEvent.h>
// extern THCState *state;
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x, " must be a CUDAtensor ")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x, " must be contiguous ")
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor) {
CHECK_INPUT(new_xyz_tensor);
CHECK_INPUT(xyz_tensor);
const float *new_xyz = new_xyz_tensor.data<float>();
const float *xyz = xyz_tensor.data<float>();
int *idx = idx_tensor.data<int>();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
ball_query_kernel_launcher_fast(b, n, m, radius, nsample, new_xyz, xyz, idx, stream);
return 1;
}

View File

@@ -0,0 +1,67 @@
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "ball_query_gpu.h"
#include "cuda_utils.h"
__global__ void ball_query_kernel_fast(int b, int n, int m, float radius, int nsample,
const float *__restrict__ new_xyz, const float *__restrict__ xyz, int *__restrict__ idx) {
// new_xyz: (B, M, 3)
// xyz: (B, N, 3)
// output:
// idx: (B, M, nsample)
int bs_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || pt_idx >= m) return;
new_xyz += bs_idx * m * 3 + pt_idx * 3;
xyz += bs_idx * n * 3;
idx += bs_idx * m * nsample + pt_idx * nsample;
float radius2 = radius * radius;
float new_x = new_xyz[0];
float new_y = new_xyz[1];
float new_z = new_xyz[2];
int cnt = 0;
for (int k = 0; k < n; ++k) {
float x = xyz[k * 3 + 0];
float y = xyz[k * 3 + 1];
float z = xyz[k * 3 + 2];
float d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) + (new_z - z) * (new_z - z);
if (d2 < radius2){
if (cnt == 0){
for (int l = 0; l < nsample; ++l) {
idx[l] = k;
}
}
idx[cnt] = k;
++cnt;
if (cnt >= nsample) break;
}
}
}
void ball_query_kernel_launcher_fast(int b, int n, int m, float radius, int nsample, \
const float *new_xyz, const float *xyz, int *idx, cudaStream_t stream) {
// new_xyz: (B, M, 3)
// xyz: (B, N, 3)
// output:
// idx: (B, M, nsample)
cudaError_t err;
dim3 blocks(DIVUP(m, THREADS_PER_BLOCK), b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
ball_query_kernel_fast<<<blocks, threads, 0, stream>>>(b, n, m, radius, nsample, new_xyz, xyz, idx);
// cudaDeviceSynchronize(); // for using printf in kernel function
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}

View File

@@ -0,0 +1,15 @@
#ifndef _BALL_QUERY_GPU_H
#define _BALL_QUERY_GPU_H
#include <torch/serialize/tensor.h>
#include <vector>
#include <cuda.h>
#include <cuda_runtime_api.h>
int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor);
void ball_query_kernel_launcher_fast(int b, int n, int m, float radius, int nsample,
const float *xyz, const float *new_xyz, int *idx, cudaStream_t stream);
#endif

View File

@@ -0,0 +1,15 @@
#ifndef _CUDA_UTILS_H
#define _CUDA_UTILS_H
#include <cmath>
#define TOTAL_THREADS 1024
#define THREADS_PER_BLOCK 256
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
inline int opt_n_threads(int work_size) {
const int pow_2 = std::log(static_cast<double>(work_size)) / std::log(2.0);
return max(min(1 << pow_2, TOTAL_THREADS), 1);
}
#endif

View File

@@ -0,0 +1,37 @@
#include <torch/serialize/tensor.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <vector>
// #include <THC/THC.h>
#include "group_points_gpu.h"
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAEvent.h>
// extern THCState *state;
int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample,
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) {
float *grad_points = grad_points_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
const float *grad_out = grad_out_tensor.data<float>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
group_points_grad_kernel_launcher_fast(b, c, n, npoints, nsample, grad_out, idx, grad_points, stream);
return 1;
}
int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample,
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor) {
const float *points = points_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
float *out = out_tensor.data<float>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
group_points_kernel_launcher_fast(b, c, n, npoints, nsample, points, idx, out, stream);
return 1;
}

View File

@@ -0,0 +1,86 @@
#include <stdio.h>
#include <stdlib.h>
#include "cuda_utils.h"
#include "group_points_gpu.h"
__global__ void group_points_grad_kernel_fast(int b, int c, int n, int npoints, int nsample,
const float *__restrict__ grad_out, const int *__restrict__ idx, float *__restrict__ grad_points) {
// grad_out: (B, C, npoints, nsample)
// idx: (B, npoints, nsample)
// output:
// grad_points: (B, C, N)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int index = blockIdx.x * blockDim.x + threadIdx.x;
int pt_idx = index / nsample;
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
int sample_idx = index % nsample;
grad_out += bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
atomicAdd(grad_points + bs_idx * c * n + c_idx * n + idx[0] , grad_out[0]);
}
void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream) {
// grad_out: (B, C, npoints, nsample)
// idx: (B, npoints, nsample)
// output:
// grad_points: (B, C, N)
cudaError_t err;
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
group_points_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, nsample, grad_out, idx, grad_points);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void group_points_kernel_fast(int b, int c, int n, int npoints, int nsample,
const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
// points: (B, C, N)
// idx: (B, npoints, nsample)
// output:
// out: (B, C, npoints, nsample)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int index = blockIdx.x * blockDim.x + threadIdx.x;
int pt_idx = index / nsample;
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
int sample_idx = index % nsample;
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
int in_idx = bs_idx * c * n + c_idx * n + idx[0];
int out_idx = bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
out[out_idx] = points[in_idx];
}
void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
const float *points, const int *idx, float *out, cudaStream_t stream) {
// points: (B, C, N)
// idx: (B, npoints, nsample)
// output:
// out: (B, C, npoints, nsample)
cudaError_t err;
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
group_points_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, nsample, points, idx, out);
// cudaDeviceSynchronize(); // for using printf in kernel function
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}

View File

@@ -0,0 +1,22 @@
#ifndef _GROUP_POINTS_GPU_H
#define _GROUP_POINTS_GPU_H
#include <torch/serialize/tensor.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <vector>
int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample,
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor);
void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
const float *points, const int *idx, float *out, cudaStream_t stream);
int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample,
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor);
void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream);
#endif

View File

@@ -0,0 +1,59 @@
#include <torch/serialize/tensor.h>
#include <vector>
// #include <THC/THC.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAEvent.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "interpolate_gpu.h"
// extern THCState *state;
void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor) {
const float *unknown = unknown_tensor.data<float>();
const float *known = known_tensor.data<float>();
float *dist2 = dist2_tensor.data<float>();
int *idx = idx_tensor.data<int>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
three_nn_kernel_launcher_fast(b, n, m, unknown, known, dist2, idx, stream);
}
void three_interpolate_wrapper_fast(int b, int c, int m, int n,
at::Tensor points_tensor,
at::Tensor idx_tensor,
at::Tensor weight_tensor,
at::Tensor out_tensor) {
const float *points = points_tensor.data<float>();
const float *weight = weight_tensor.data<float>();
float *out = out_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
three_interpolate_kernel_launcher_fast(b, c, m, n, points, idx, weight, out, stream);
}
void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m,
at::Tensor grad_out_tensor,
at::Tensor idx_tensor,
at::Tensor weight_tensor,
at::Tensor grad_points_tensor) {
const float *grad_out = grad_out_tensor.data<float>();
const float *weight = weight_tensor.data<float>();
float *grad_points = grad_points_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
three_interpolate_grad_kernel_launcher_fast(b, c, n, m, grad_out, idx, weight, grad_points, stream);
}

View File

@@ -0,0 +1,161 @@
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "cuda_utils.h"
#include "interpolate_gpu.h"
__global__ void three_nn_kernel_fast(int b, int n, int m, const float *__restrict__ unknown,
const float *__restrict__ known, float *__restrict__ dist2, int *__restrict__ idx) {
// unknown: (B, N, 3)
// known: (B, M, 3)
// output:
// dist2: (B, N, 3)
// idx: (B, N, 3)
int bs_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || pt_idx >= n) return;
unknown += bs_idx * n * 3 + pt_idx * 3;
known += bs_idx * m * 3;
dist2 += bs_idx * n * 3 + pt_idx * 3;
idx += bs_idx * n * 3 + pt_idx * 3;
float ux = unknown[0];
float uy = unknown[1];
float uz = unknown[2];
double best1 = 1e40, best2 = 1e40, best3 = 1e40;
int besti1 = 0, besti2 = 0, besti3 = 0;
for (int k = 0; k < m; ++k) {
float x = known[k * 3 + 0];
float y = known[k * 3 + 1];
float z = known[k * 3 + 2];
float d = (ux - x) * (ux - x) + (uy - y) * (uy - y) + (uz - z) * (uz - z);
if (d < best1) {
best3 = best2; besti3 = besti2;
best2 = best1; besti2 = besti1;
best1 = d; besti1 = k;
}
else if (d < best2) {
best3 = best2; besti3 = besti2;
best2 = d; besti2 = k;
}
else if (d < best3) {
best3 = d; besti3 = k;
}
}
dist2[0] = best1; dist2[1] = best2; dist2[2] = best3;
idx[0] = besti1; idx[1] = besti2; idx[2] = besti3;
}
void three_nn_kernel_launcher_fast(int b, int n, int m, const float *unknown,
const float *known, float *dist2, int *idx, cudaStream_t stream) {
// unknown: (B, N, 3)
// known: (B, M, 3)
// output:
// dist2: (B, N, 3)
// idx: (B, N, 3)
cudaError_t err;
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
three_nn_kernel_fast<<<blocks, threads, 0, stream>>>(b, n, m, unknown, known, dist2, idx);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void three_interpolate_kernel_fast(int b, int c, int m, int n, const float *__restrict__ points,
const int *__restrict__ idx, const float *__restrict__ weight, float *__restrict__ out) {
// points: (B, C, M)
// idx: (B, N, 3)
// weight: (B, N, 3)
// output:
// out: (B, C, N)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || c_idx >= c || pt_idx >= n) return;
weight += bs_idx * n * 3 + pt_idx * 3;
points += bs_idx * c * m + c_idx * m;
idx += bs_idx * n * 3 + pt_idx * 3;
out += bs_idx * c * n + c_idx * n;
out[pt_idx] = weight[0] * points[idx[0]] + weight[1] * points[idx[1]] + weight[2] * points[idx[2]];
}
void three_interpolate_kernel_launcher_fast(int b, int c, int m, int n,
const float *points, const int *idx, const float *weight, float *out, cudaStream_t stream) {
// points: (B, C, M)
// idx: (B, N, 3)
// weight: (B, N, 3)
// output:
// out: (B, C, N)
cudaError_t err;
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
three_interpolate_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, m, n, points, idx, weight, out);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void three_interpolate_grad_kernel_fast(int b, int c, int n, int m, const float *__restrict__ grad_out,
const int *__restrict__ idx, const float *__restrict__ weight, float *__restrict__ grad_points) {
// grad_out: (B, C, N)
// weight: (B, N, 3)
// output:
// grad_points: (B, C, M)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || c_idx >= c || pt_idx >= n) return;
grad_out += bs_idx * c * n + c_idx * n + pt_idx;
weight += bs_idx * n * 3 + pt_idx * 3;
grad_points += bs_idx * c * m + c_idx * m;
idx += bs_idx * n * 3 + pt_idx * 3;
atomicAdd(grad_points + idx[0], grad_out[0] * weight[0]);
atomicAdd(grad_points + idx[1], grad_out[0] * weight[1]);
atomicAdd(grad_points + idx[2], grad_out[0] * weight[2]);
}
void three_interpolate_grad_kernel_launcher_fast(int b, int c, int n, int m, const float *grad_out,
const int *idx, const float *weight, float *grad_points, cudaStream_t stream) {
// grad_out: (B, C, N)
// weight: (B, N, 3)
// output:
// grad_points: (B, C, M)
cudaError_t err;
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
three_interpolate_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, m, grad_out, idx, weight, grad_points);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}

View File

@@ -0,0 +1,30 @@
#ifndef _INTERPOLATE_GPU_H
#define _INTERPOLATE_GPU_H
#include <torch/serialize/tensor.h>
#include<vector>
#include <cuda.h>
#include <cuda_runtime_api.h>
void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor);
void three_nn_kernel_launcher_fast(int b, int n, int m, const float *unknown,
const float *known, float *dist2, int *idx, cudaStream_t stream);
void three_interpolate_wrapper_fast(int b, int c, int m, int n, at::Tensor points_tensor,
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor out_tensor);
void three_interpolate_kernel_launcher_fast(int b, int c, int m, int n,
const float *points, const int *idx, const float *weight, float *out, cudaStream_t stream);
void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m, at::Tensor grad_out_tensor,
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor grad_points_tensor);
void three_interpolate_grad_kernel_launcher_fast(int b, int c, int n, int m, const float *grad_out,
const int *idx, const float *weight, float *grad_points, cudaStream_t stream);
#endif

View File

@@ -0,0 +1,24 @@
#include <torch/serialize/tensor.h>
#include <torch/extension.h>
#include "ball_query_gpu.h"
#include "group_points_gpu.h"
#include "sampling_gpu.h"
#include "interpolate_gpu.h"
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("ball_query_wrapper", &ball_query_wrapper_fast, "ball_query_wrapper_fast");
m.def("group_points_wrapper", &group_points_wrapper_fast, "group_points_wrapper_fast");
m.def("group_points_grad_wrapper", &group_points_grad_wrapper_fast, "group_points_grad_wrapper_fast");
m.def("gather_points_wrapper", &gather_points_wrapper_fast, "gather_points_wrapper_fast");
m.def("gather_points_grad_wrapper", &gather_points_grad_wrapper_fast, "gather_points_grad_wrapper_fast");
m.def("furthest_point_sampling_wrapper", &furthest_point_sampling_wrapper, "furthest_point_sampling_wrapper");
m.def("three_nn_wrapper", &three_nn_wrapper_fast, "three_nn_wrapper_fast");
m.def("three_interpolate_wrapper", &three_interpolate_wrapper_fast, "three_interpolate_wrapper_fast");
m.def("three_interpolate_grad_wrapper", &three_interpolate_grad_wrapper_fast, "three_interpolate_grad_wrapper_fast");
}

View File

@@ -0,0 +1,51 @@
#include <torch/serialize/tensor.h>
#include <ATen/cuda/CUDAContext.h>
#include <vector>
// #include <THC/THC.h>
#include "sampling_gpu.h"
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAEvent.h>
// extern THCState *state;
int gather_points_wrapper_fast(int b, int c, int n, int npoints,
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor){
const float *points = points_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
float *out = out_tensor.data<float>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
gather_points_kernel_launcher_fast(b, c, n, npoints, points, idx, out, stream);
return 1;
}
int gather_points_grad_wrapper_fast(int b, int c, int n, int npoints,
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) {
const float *grad_out = grad_out_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
float *grad_points = grad_points_tensor.data<float>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
gather_points_grad_kernel_launcher_fast(b, c, n, npoints, grad_out, idx, grad_points, stream);
return 1;
}
int furthest_point_sampling_wrapper(int b, int n, int m,
at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor) {
const float *points = points_tensor.data<float>();
float *temp = temp_tensor.data<float>();
int *idx = idx_tensor.data<int>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
furthest_point_sampling_kernel_launcher(b, n, m, points, temp, idx, stream);
return 1;
}

View File

@@ -0,0 +1,253 @@
#include <stdio.h>
#include <stdlib.h>
#include "cuda_utils.h"
#include "sampling_gpu.h"
__global__ void gather_points_kernel_fast(int b, int c, int n, int m,
const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
// points: (B, C, N)
// idx: (B, M)
// output:
// out: (B, C, M)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;
out += bs_idx * c * m + c_idx * m + pt_idx;
idx += bs_idx * m + pt_idx;
points += bs_idx * c * n + c_idx * n;
out[0] = points[idx[0]];
}
void gather_points_kernel_launcher_fast(int b, int c, int n, int npoints,
const float *points, const int *idx, float *out, cudaStream_t stream) {
// points: (B, C, N)
// idx: (B, npoints)
// output:
// out: (B, C, npoints)
cudaError_t err;
dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
gather_points_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, points, idx, out);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void gather_points_grad_kernel_fast(int b, int c, int n, int m, const float *__restrict__ grad_out,
const int *__restrict__ idx, float *__restrict__ grad_points) {
// grad_out: (B, C, M)
// idx: (B, M)
// output:
// grad_points: (B, C, N)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;
grad_out += bs_idx * c * m + c_idx * m + pt_idx;
idx += bs_idx * m + pt_idx;
grad_points += bs_idx * c * n + c_idx * n;
atomicAdd(grad_points + idx[0], grad_out[0]);
}
void gather_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints,
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream) {
// grad_out: (B, C, npoints)
// idx: (B, npoints)
// output:
// grad_points: (B, C, N)
cudaError_t err;
dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
gather_points_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, grad_out, idx, grad_points);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__device__ void __update(float *__restrict__ dists, int *__restrict__ dists_i, int idx1, int idx2){
const float v1 = dists[idx1], v2 = dists[idx2];
const int i1 = dists_i[idx1], i2 = dists_i[idx2];
dists[idx1] = max(v1, v2);
dists_i[idx1] = v2 > v1 ? i2 : i1;
}
template <unsigned int block_size>
__global__ void furthest_point_sampling_kernel(int b, int n, int m,
const float *__restrict__ dataset, float *__restrict__ temp, int *__restrict__ idxs) {
// dataset: (B, N, 3)
// tmp: (B, N)
// output:
// idx: (B, M)
if (m <= 0) return;
__shared__ float dists[block_size];
__shared__ int dists_i[block_size];
int batch_index = blockIdx.x;
dataset += batch_index * n * 3;
temp += batch_index * n;
idxs += batch_index * m;
int tid = threadIdx.x;
const int stride = block_size;
int old = 0;
if (threadIdx.x == 0)
idxs[0] = old;
__syncthreads();
for (int j = 1; j < m; j++) {
int besti = 0;
float best = -1;
float x1 = dataset[old * 3 + 0];
float y1 = dataset[old * 3 + 1];
float z1 = dataset[old * 3 + 2];
for (int k = tid; k < n; k += stride) {
float x2, y2, z2;
x2 = dataset[k * 3 + 0];
y2 = dataset[k * 3 + 1];
z2 = dataset[k * 3 + 2];
// float mag = (x2 * x2) + (y2 * y2) + (z2 * z2);
// if (mag <= 1e-3)
// continue;
float d = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) * (z2 - z1);
float d2 = min(d, temp[k]);
temp[k] = d2;
besti = d2 > best ? k : besti;
best = d2 > best ? d2 : best;
}
dists[tid] = best;
dists_i[tid] = besti;
__syncthreads();
if (block_size >= 1024) {
if (tid < 512) {
__update(dists, dists_i, tid, tid + 512);
}
__syncthreads();
}
if (block_size >= 512) {
if (tid < 256) {
__update(dists, dists_i, tid, tid + 256);
}
__syncthreads();
}
if (block_size >= 256) {
if (tid < 128) {
__update(dists, dists_i, tid, tid + 128);
}
__syncthreads();
}
if (block_size >= 128) {
if (tid < 64) {
__update(dists, dists_i, tid, tid + 64);
}
__syncthreads();
}
if (block_size >= 64) {
if (tid < 32) {
__update(dists, dists_i, tid, tid + 32);
}
__syncthreads();
}
if (block_size >= 32) {
if (tid < 16) {
__update(dists, dists_i, tid, tid + 16);
}
__syncthreads();
}
if (block_size >= 16) {
if (tid < 8) {
__update(dists, dists_i, tid, tid + 8);
}
__syncthreads();
}
if (block_size >= 8) {
if (tid < 4) {
__update(dists, dists_i, tid, tid + 4);
}
__syncthreads();
}
if (block_size >= 4) {
if (tid < 2) {
__update(dists, dists_i, tid, tid + 2);
}
__syncthreads();
}
if (block_size >= 2) {
if (tid < 1) {
__update(dists, dists_i, tid, tid + 1);
}
__syncthreads();
}
old = dists_i[0];
if (tid == 0)
idxs[j] = old;
}
}
void furthest_point_sampling_kernel_launcher(int b, int n, int m,
const float *dataset, float *temp, int *idxs, cudaStream_t stream) {
// dataset: (B, N, 3)
// tmp: (B, N)
// output:
// idx: (B, M)
cudaError_t err;
unsigned int n_threads = opt_n_threads(n);
switch (n_threads) {
case 1024:
furthest_point_sampling_kernel<1024><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 512:
furthest_point_sampling_kernel<512><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 256:
furthest_point_sampling_kernel<256><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 128:
furthest_point_sampling_kernel<128><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 64:
furthest_point_sampling_kernel<64><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 32:
furthest_point_sampling_kernel<32><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 16:
furthest_point_sampling_kernel<16><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 8:
furthest_point_sampling_kernel<8><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 4:
furthest_point_sampling_kernel<4><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 2:
furthest_point_sampling_kernel<2><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 1:
furthest_point_sampling_kernel<1><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
default:
furthest_point_sampling_kernel<512><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
}
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}

View File

@@ -0,0 +1,29 @@
#ifndef _SAMPLING_GPU_H
#define _SAMPLING_GPU_H
#include <torch/serialize/tensor.h>
#include <ATen/cuda/CUDAContext.h>
#include<vector>
int gather_points_wrapper_fast(int b, int c, int n, int npoints,
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor);
void gather_points_kernel_launcher_fast(int b, int c, int n, int npoints,
const float *points, const int *idx, float *out, cudaStream_t stream);
int gather_points_grad_wrapper_fast(int b, int c, int n, int npoints,
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor);
void gather_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints,
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream);
int furthest_point_sampling_wrapper(int b, int n, int m,
at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor);
void furthest_point_sampling_kernel_launcher(int b, int n, int m,
const float *dataset, float *temp, int *idxs, cudaStream_t stream);
#endif