This commit is contained in:
2024-10-09 16:13:22 +00:00
commit 0ea3f048dc
437 changed files with 44406 additions and 0 deletions

View File

@@ -0,0 +1,28 @@
#include <torch/serialize/tensor.h>
#include <vector>
// #include <THC/THC.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "ball_query_gpu.h"
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAEvent.h>
// extern THCState *state;
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x, " must be a CUDAtensor ")
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x, " must be contiguous ")
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor) {
CHECK_INPUT(new_xyz_tensor);
CHECK_INPUT(xyz_tensor);
const float *new_xyz = new_xyz_tensor.data<float>();
const float *xyz = xyz_tensor.data<float>();
int *idx = idx_tensor.data<int>();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
ball_query_kernel_launcher_fast(b, n, m, radius, nsample, new_xyz, xyz, idx, stream);
return 1;
}

View File

@@ -0,0 +1,67 @@
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "ball_query_gpu.h"
#include "cuda_utils.h"
__global__ void ball_query_kernel_fast(int b, int n, int m, float radius, int nsample,
const float *__restrict__ new_xyz, const float *__restrict__ xyz, int *__restrict__ idx) {
// new_xyz: (B, M, 3)
// xyz: (B, N, 3)
// output:
// idx: (B, M, nsample)
int bs_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || pt_idx >= m) return;
new_xyz += bs_idx * m * 3 + pt_idx * 3;
xyz += bs_idx * n * 3;
idx += bs_idx * m * nsample + pt_idx * nsample;
float radius2 = radius * radius;
float new_x = new_xyz[0];
float new_y = new_xyz[1];
float new_z = new_xyz[2];
int cnt = 0;
for (int k = 0; k < n; ++k) {
float x = xyz[k * 3 + 0];
float y = xyz[k * 3 + 1];
float z = xyz[k * 3 + 2];
float d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) + (new_z - z) * (new_z - z);
if (d2 < radius2){
if (cnt == 0){
for (int l = 0; l < nsample; ++l) {
idx[l] = k;
}
}
idx[cnt] = k;
++cnt;
if (cnt >= nsample) break;
}
}
}
void ball_query_kernel_launcher_fast(int b, int n, int m, float radius, int nsample, \
const float *new_xyz, const float *xyz, int *idx, cudaStream_t stream) {
// new_xyz: (B, M, 3)
// xyz: (B, N, 3)
// output:
// idx: (B, M, nsample)
cudaError_t err;
dim3 blocks(DIVUP(m, THREADS_PER_BLOCK), b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
ball_query_kernel_fast<<<blocks, threads, 0, stream>>>(b, n, m, radius, nsample, new_xyz, xyz, idx);
// cudaDeviceSynchronize(); // for using printf in kernel function
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}

View File

@@ -0,0 +1,15 @@
#ifndef _BALL_QUERY_GPU_H
#define _BALL_QUERY_GPU_H
#include <torch/serialize/tensor.h>
#include <vector>
#include <cuda.h>
#include <cuda_runtime_api.h>
int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor);
void ball_query_kernel_launcher_fast(int b, int n, int m, float radius, int nsample,
const float *xyz, const float *new_xyz, int *idx, cudaStream_t stream);
#endif

View File

@@ -0,0 +1,15 @@
#ifndef _CUDA_UTILS_H
#define _CUDA_UTILS_H
#include <cmath>
#define TOTAL_THREADS 1024
#define THREADS_PER_BLOCK 256
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
inline int opt_n_threads(int work_size) {
const int pow_2 = std::log(static_cast<double>(work_size)) / std::log(2.0);
return max(min(1 << pow_2, TOTAL_THREADS), 1);
}
#endif

View File

@@ -0,0 +1,37 @@
#include <torch/serialize/tensor.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <vector>
// #include <THC/THC.h>
#include "group_points_gpu.h"
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAEvent.h>
// extern THCState *state;
int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample,
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) {
float *grad_points = grad_points_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
const float *grad_out = grad_out_tensor.data<float>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
group_points_grad_kernel_launcher_fast(b, c, n, npoints, nsample, grad_out, idx, grad_points, stream);
return 1;
}
int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample,
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor) {
const float *points = points_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
float *out = out_tensor.data<float>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
group_points_kernel_launcher_fast(b, c, n, npoints, nsample, points, idx, out, stream);
return 1;
}

View File

@@ -0,0 +1,86 @@
#include <stdio.h>
#include <stdlib.h>
#include "cuda_utils.h"
#include "group_points_gpu.h"
__global__ void group_points_grad_kernel_fast(int b, int c, int n, int npoints, int nsample,
const float *__restrict__ grad_out, const int *__restrict__ idx, float *__restrict__ grad_points) {
// grad_out: (B, C, npoints, nsample)
// idx: (B, npoints, nsample)
// output:
// grad_points: (B, C, N)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int index = blockIdx.x * blockDim.x + threadIdx.x;
int pt_idx = index / nsample;
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
int sample_idx = index % nsample;
grad_out += bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
atomicAdd(grad_points + bs_idx * c * n + c_idx * n + idx[0] , grad_out[0]);
}
void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream) {
// grad_out: (B, C, npoints, nsample)
// idx: (B, npoints, nsample)
// output:
// grad_points: (B, C, N)
cudaError_t err;
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
group_points_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, nsample, grad_out, idx, grad_points);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void group_points_kernel_fast(int b, int c, int n, int npoints, int nsample,
const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
// points: (B, C, N)
// idx: (B, npoints, nsample)
// output:
// out: (B, C, npoints, nsample)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int index = blockIdx.x * blockDim.x + threadIdx.x;
int pt_idx = index / nsample;
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
int sample_idx = index % nsample;
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
int in_idx = bs_idx * c * n + c_idx * n + idx[0];
int out_idx = bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
out[out_idx] = points[in_idx];
}
void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
const float *points, const int *idx, float *out, cudaStream_t stream) {
// points: (B, C, N)
// idx: (B, npoints, nsample)
// output:
// out: (B, C, npoints, nsample)
cudaError_t err;
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
group_points_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, nsample, points, idx, out);
// cudaDeviceSynchronize(); // for using printf in kernel function
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}

View File

@@ -0,0 +1,22 @@
#ifndef _GROUP_POINTS_GPU_H
#define _GROUP_POINTS_GPU_H
#include <torch/serialize/tensor.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include <vector>
int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample,
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor);
void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
const float *points, const int *idx, float *out, cudaStream_t stream);
int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample,
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor);
void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream);
#endif

View File

@@ -0,0 +1,59 @@
#include <torch/serialize/tensor.h>
#include <vector>
// #include <THC/THC.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAEvent.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <cuda_runtime_api.h>
#include "interpolate_gpu.h"
// extern THCState *state;
void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor) {
const float *unknown = unknown_tensor.data<float>();
const float *known = known_tensor.data<float>();
float *dist2 = dist2_tensor.data<float>();
int *idx = idx_tensor.data<int>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
three_nn_kernel_launcher_fast(b, n, m, unknown, known, dist2, idx, stream);
}
void three_interpolate_wrapper_fast(int b, int c, int m, int n,
at::Tensor points_tensor,
at::Tensor idx_tensor,
at::Tensor weight_tensor,
at::Tensor out_tensor) {
const float *points = points_tensor.data<float>();
const float *weight = weight_tensor.data<float>();
float *out = out_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
three_interpolate_kernel_launcher_fast(b, c, m, n, points, idx, weight, out, stream);
}
void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m,
at::Tensor grad_out_tensor,
at::Tensor idx_tensor,
at::Tensor weight_tensor,
at::Tensor grad_points_tensor) {
const float *grad_out = grad_out_tensor.data<float>();
const float *weight = weight_tensor.data<float>();
float *grad_points = grad_points_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
three_interpolate_grad_kernel_launcher_fast(b, c, n, m, grad_out, idx, weight, grad_points, stream);
}

View File

@@ -0,0 +1,161 @@
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "cuda_utils.h"
#include "interpolate_gpu.h"
__global__ void three_nn_kernel_fast(int b, int n, int m, const float *__restrict__ unknown,
const float *__restrict__ known, float *__restrict__ dist2, int *__restrict__ idx) {
// unknown: (B, N, 3)
// known: (B, M, 3)
// output:
// dist2: (B, N, 3)
// idx: (B, N, 3)
int bs_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || pt_idx >= n) return;
unknown += bs_idx * n * 3 + pt_idx * 3;
known += bs_idx * m * 3;
dist2 += bs_idx * n * 3 + pt_idx * 3;
idx += bs_idx * n * 3 + pt_idx * 3;
float ux = unknown[0];
float uy = unknown[1];
float uz = unknown[2];
double best1 = 1e40, best2 = 1e40, best3 = 1e40;
int besti1 = 0, besti2 = 0, besti3 = 0;
for (int k = 0; k < m; ++k) {
float x = known[k * 3 + 0];
float y = known[k * 3 + 1];
float z = known[k * 3 + 2];
float d = (ux - x) * (ux - x) + (uy - y) * (uy - y) + (uz - z) * (uz - z);
if (d < best1) {
best3 = best2; besti3 = besti2;
best2 = best1; besti2 = besti1;
best1 = d; besti1 = k;
}
else if (d < best2) {
best3 = best2; besti3 = besti2;
best2 = d; besti2 = k;
}
else if (d < best3) {
best3 = d; besti3 = k;
}
}
dist2[0] = best1; dist2[1] = best2; dist2[2] = best3;
idx[0] = besti1; idx[1] = besti2; idx[2] = besti3;
}
void three_nn_kernel_launcher_fast(int b, int n, int m, const float *unknown,
const float *known, float *dist2, int *idx, cudaStream_t stream) {
// unknown: (B, N, 3)
// known: (B, M, 3)
// output:
// dist2: (B, N, 3)
// idx: (B, N, 3)
cudaError_t err;
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
three_nn_kernel_fast<<<blocks, threads, 0, stream>>>(b, n, m, unknown, known, dist2, idx);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void three_interpolate_kernel_fast(int b, int c, int m, int n, const float *__restrict__ points,
const int *__restrict__ idx, const float *__restrict__ weight, float *__restrict__ out) {
// points: (B, C, M)
// idx: (B, N, 3)
// weight: (B, N, 3)
// output:
// out: (B, C, N)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || c_idx >= c || pt_idx >= n) return;
weight += bs_idx * n * 3 + pt_idx * 3;
points += bs_idx * c * m + c_idx * m;
idx += bs_idx * n * 3 + pt_idx * 3;
out += bs_idx * c * n + c_idx * n;
out[pt_idx] = weight[0] * points[idx[0]] + weight[1] * points[idx[1]] + weight[2] * points[idx[2]];
}
void three_interpolate_kernel_launcher_fast(int b, int c, int m, int n,
const float *points, const int *idx, const float *weight, float *out, cudaStream_t stream) {
// points: (B, C, M)
// idx: (B, N, 3)
// weight: (B, N, 3)
// output:
// out: (B, C, N)
cudaError_t err;
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
three_interpolate_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, m, n, points, idx, weight, out);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void three_interpolate_grad_kernel_fast(int b, int c, int n, int m, const float *__restrict__ grad_out,
const int *__restrict__ idx, const float *__restrict__ weight, float *__restrict__ grad_points) {
// grad_out: (B, C, N)
// weight: (B, N, 3)
// output:
// grad_points: (B, C, M)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || c_idx >= c || pt_idx >= n) return;
grad_out += bs_idx * c * n + c_idx * n + pt_idx;
weight += bs_idx * n * 3 + pt_idx * 3;
grad_points += bs_idx * c * m + c_idx * m;
idx += bs_idx * n * 3 + pt_idx * 3;
atomicAdd(grad_points + idx[0], grad_out[0] * weight[0]);
atomicAdd(grad_points + idx[1], grad_out[0] * weight[1]);
atomicAdd(grad_points + idx[2], grad_out[0] * weight[2]);
}
void three_interpolate_grad_kernel_launcher_fast(int b, int c, int n, int m, const float *grad_out,
const int *idx, const float *weight, float *grad_points, cudaStream_t stream) {
// grad_out: (B, C, N)
// weight: (B, N, 3)
// output:
// grad_points: (B, C, M)
cudaError_t err;
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
three_interpolate_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, m, grad_out, idx, weight, grad_points);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}

View File

@@ -0,0 +1,30 @@
#ifndef _INTERPOLATE_GPU_H
#define _INTERPOLATE_GPU_H
#include <torch/serialize/tensor.h>
#include<vector>
#include <cuda.h>
#include <cuda_runtime_api.h>
void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor);
void three_nn_kernel_launcher_fast(int b, int n, int m, const float *unknown,
const float *known, float *dist2, int *idx, cudaStream_t stream);
void three_interpolate_wrapper_fast(int b, int c, int m, int n, at::Tensor points_tensor,
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor out_tensor);
void three_interpolate_kernel_launcher_fast(int b, int c, int m, int n,
const float *points, const int *idx, const float *weight, float *out, cudaStream_t stream);
void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m, at::Tensor grad_out_tensor,
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor grad_points_tensor);
void three_interpolate_grad_kernel_launcher_fast(int b, int c, int n, int m, const float *grad_out,
const int *idx, const float *weight, float *grad_points, cudaStream_t stream);
#endif

View File

@@ -0,0 +1,24 @@
#include <torch/serialize/tensor.h>
#include <torch/extension.h>
#include "ball_query_gpu.h"
#include "group_points_gpu.h"
#include "sampling_gpu.h"
#include "interpolate_gpu.h"
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("ball_query_wrapper", &ball_query_wrapper_fast, "ball_query_wrapper_fast");
m.def("group_points_wrapper", &group_points_wrapper_fast, "group_points_wrapper_fast");
m.def("group_points_grad_wrapper", &group_points_grad_wrapper_fast, "group_points_grad_wrapper_fast");
m.def("gather_points_wrapper", &gather_points_wrapper_fast, "gather_points_wrapper_fast");
m.def("gather_points_grad_wrapper", &gather_points_grad_wrapper_fast, "gather_points_grad_wrapper_fast");
m.def("furthest_point_sampling_wrapper", &furthest_point_sampling_wrapper, "furthest_point_sampling_wrapper");
m.def("three_nn_wrapper", &three_nn_wrapper_fast, "three_nn_wrapper_fast");
m.def("three_interpolate_wrapper", &three_interpolate_wrapper_fast, "three_interpolate_wrapper_fast");
m.def("three_interpolate_grad_wrapper", &three_interpolate_grad_wrapper_fast, "three_interpolate_grad_wrapper_fast");
}

View File

@@ -0,0 +1,51 @@
#include <torch/serialize/tensor.h>
#include <ATen/cuda/CUDAContext.h>
#include <vector>
// #include <THC/THC.h>
#include "sampling_gpu.h"
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/CUDAEvent.h>
// extern THCState *state;
int gather_points_wrapper_fast(int b, int c, int n, int npoints,
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor){
const float *points = points_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
float *out = out_tensor.data<float>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
gather_points_kernel_launcher_fast(b, c, n, npoints, points, idx, out, stream);
return 1;
}
int gather_points_grad_wrapper_fast(int b, int c, int n, int npoints,
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) {
const float *grad_out = grad_out_tensor.data<float>();
const int *idx = idx_tensor.data<int>();
float *grad_points = grad_points_tensor.data<float>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
gather_points_grad_kernel_launcher_fast(b, c, n, npoints, grad_out, idx, grad_points, stream);
return 1;
}
int furthest_point_sampling_wrapper(int b, int n, int m,
at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor) {
const float *points = points_tensor.data<float>();
float *temp = temp_tensor.data<float>();
int *idx = idx_tensor.data<int>();
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
furthest_point_sampling_kernel_launcher(b, n, m, points, temp, idx, stream);
return 1;
}

View File

@@ -0,0 +1,253 @@
#include <stdio.h>
#include <stdlib.h>
#include "cuda_utils.h"
#include "sampling_gpu.h"
__global__ void gather_points_kernel_fast(int b, int c, int n, int m,
const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
// points: (B, C, N)
// idx: (B, M)
// output:
// out: (B, C, M)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;
out += bs_idx * c * m + c_idx * m + pt_idx;
idx += bs_idx * m + pt_idx;
points += bs_idx * c * n + c_idx * n;
out[0] = points[idx[0]];
}
void gather_points_kernel_launcher_fast(int b, int c, int n, int npoints,
const float *points, const int *idx, float *out, cudaStream_t stream) {
// points: (B, C, N)
// idx: (B, npoints)
// output:
// out: (B, C, npoints)
cudaError_t err;
dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
gather_points_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, points, idx, out);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__global__ void gather_points_grad_kernel_fast(int b, int c, int n, int m, const float *__restrict__ grad_out,
const int *__restrict__ idx, float *__restrict__ grad_points) {
// grad_out: (B, C, M)
// idx: (B, M)
// output:
// grad_points: (B, C, N)
int bs_idx = blockIdx.z;
int c_idx = blockIdx.y;
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;
grad_out += bs_idx * c * m + c_idx * m + pt_idx;
idx += bs_idx * m + pt_idx;
grad_points += bs_idx * c * n + c_idx * n;
atomicAdd(grad_points + idx[0], grad_out[0]);
}
void gather_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints,
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream) {
// grad_out: (B, C, npoints)
// idx: (B, npoints)
// output:
// grad_points: (B, C, N)
cudaError_t err;
dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
dim3 threads(THREADS_PER_BLOCK);
gather_points_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, grad_out, idx, grad_points);
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}
__device__ void __update(float *__restrict__ dists, int *__restrict__ dists_i, int idx1, int idx2){
const float v1 = dists[idx1], v2 = dists[idx2];
const int i1 = dists_i[idx1], i2 = dists_i[idx2];
dists[idx1] = max(v1, v2);
dists_i[idx1] = v2 > v1 ? i2 : i1;
}
template <unsigned int block_size>
__global__ void furthest_point_sampling_kernel(int b, int n, int m,
const float *__restrict__ dataset, float *__restrict__ temp, int *__restrict__ idxs) {
// dataset: (B, N, 3)
// tmp: (B, N)
// output:
// idx: (B, M)
if (m <= 0) return;
__shared__ float dists[block_size];
__shared__ int dists_i[block_size];
int batch_index = blockIdx.x;
dataset += batch_index * n * 3;
temp += batch_index * n;
idxs += batch_index * m;
int tid = threadIdx.x;
const int stride = block_size;
int old = 0;
if (threadIdx.x == 0)
idxs[0] = old;
__syncthreads();
for (int j = 1; j < m; j++) {
int besti = 0;
float best = -1;
float x1 = dataset[old * 3 + 0];
float y1 = dataset[old * 3 + 1];
float z1 = dataset[old * 3 + 2];
for (int k = tid; k < n; k += stride) {
float x2, y2, z2;
x2 = dataset[k * 3 + 0];
y2 = dataset[k * 3 + 1];
z2 = dataset[k * 3 + 2];
// float mag = (x2 * x2) + (y2 * y2) + (z2 * z2);
// if (mag <= 1e-3)
// continue;
float d = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) * (z2 - z1);
float d2 = min(d, temp[k]);
temp[k] = d2;
besti = d2 > best ? k : besti;
best = d2 > best ? d2 : best;
}
dists[tid] = best;
dists_i[tid] = besti;
__syncthreads();
if (block_size >= 1024) {
if (tid < 512) {
__update(dists, dists_i, tid, tid + 512);
}
__syncthreads();
}
if (block_size >= 512) {
if (tid < 256) {
__update(dists, dists_i, tid, tid + 256);
}
__syncthreads();
}
if (block_size >= 256) {
if (tid < 128) {
__update(dists, dists_i, tid, tid + 128);
}
__syncthreads();
}
if (block_size >= 128) {
if (tid < 64) {
__update(dists, dists_i, tid, tid + 64);
}
__syncthreads();
}
if (block_size >= 64) {
if (tid < 32) {
__update(dists, dists_i, tid, tid + 32);
}
__syncthreads();
}
if (block_size >= 32) {
if (tid < 16) {
__update(dists, dists_i, tid, tid + 16);
}
__syncthreads();
}
if (block_size >= 16) {
if (tid < 8) {
__update(dists, dists_i, tid, tid + 8);
}
__syncthreads();
}
if (block_size >= 8) {
if (tid < 4) {
__update(dists, dists_i, tid, tid + 4);
}
__syncthreads();
}
if (block_size >= 4) {
if (tid < 2) {
__update(dists, dists_i, tid, tid + 2);
}
__syncthreads();
}
if (block_size >= 2) {
if (tid < 1) {
__update(dists, dists_i, tid, tid + 1);
}
__syncthreads();
}
old = dists_i[0];
if (tid == 0)
idxs[j] = old;
}
}
void furthest_point_sampling_kernel_launcher(int b, int n, int m,
const float *dataset, float *temp, int *idxs, cudaStream_t stream) {
// dataset: (B, N, 3)
// tmp: (B, N)
// output:
// idx: (B, M)
cudaError_t err;
unsigned int n_threads = opt_n_threads(n);
switch (n_threads) {
case 1024:
furthest_point_sampling_kernel<1024><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 512:
furthest_point_sampling_kernel<512><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 256:
furthest_point_sampling_kernel<256><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 128:
furthest_point_sampling_kernel<128><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 64:
furthest_point_sampling_kernel<64><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 32:
furthest_point_sampling_kernel<32><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 16:
furthest_point_sampling_kernel<16><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 8:
furthest_point_sampling_kernel<8><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 4:
furthest_point_sampling_kernel<4><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 2:
furthest_point_sampling_kernel<2><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
case 1:
furthest_point_sampling_kernel<1><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
default:
furthest_point_sampling_kernel<512><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
}
err = cudaGetLastError();
if (cudaSuccess != err) {
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
exit(-1);
}
}

View File

@@ -0,0 +1,29 @@
#ifndef _SAMPLING_GPU_H
#define _SAMPLING_GPU_H
#include <torch/serialize/tensor.h>
#include <ATen/cuda/CUDAContext.h>
#include<vector>
int gather_points_wrapper_fast(int b, int c, int n, int npoints,
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor);
void gather_points_kernel_launcher_fast(int b, int c, int n, int npoints,
const float *points, const int *idx, float *out, cudaStream_t stream);
int gather_points_grad_wrapper_fast(int b, int c, int n, int npoints,
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor);
void gather_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints,
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream);
int furthest_point_sampling_wrapper(int b, int n, int m,
at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor);
void furthest_point_sampling_kernel_launcher(int b, int n, int m,
const float *dataset, float *temp, int *idxs, cudaStream_t stream);
#endif