This commit is contained in:
2024-10-09 16:13:22 +00:00
commit 0ea3f048dc
437 changed files with 44406 additions and 0 deletions

0
runners/__init__.py Executable file
View File

132
runners/inference_engine.py Executable file
View File

@@ -0,0 +1,132 @@
import os
import sys
from datetime import datetime
import torch
import pickle
from tqdm import tqdm
path = os.path.abspath(__file__)
for i in range(2):
path = os.path.dirname(path)
PROJECT_ROOT = path
sys.path.append(PROJECT_ROOT)
from configs.config import ConfigManager
from datasets.dataset_factory import DatasetFactory
from modules.pipeline import Pipeline
from runners.runner import Runner
class InferenceEngine(Runner):
RESULTS_DIR_NAME: str = 'results'
LOG_DIR_NAME: str = 'log'
def __init__(self, config_path):
super().__init__(config_path)
''' Pipeline '''
self.pipeline_config = ConfigManager.get("settings", "pipeline")
self.pipeline = Pipeline(self.pipeline_config).to(self.device)
''' Experiment '''
self.model_path = ConfigManager.get("settings", "experiment", "model_path")
self.load_checkpoint(self.model_path)
self.load_experiment("inference")
''' Inference Results '''
self.inference_results_config = ConfigManager.get("settings", "results")
self.save_data_keys = self.inference_results_config["save_data_keys"]
self.save_output_keys = self.inference_results_config["save_output_keys"]
''' Test '''
self.test_config = ConfigManager.get("settings", "test")
self.test_dataset_config_list = self.test_config["dataset_list"]
self.test_set_list = []
seen_name = set()
for test_dataset_config in self.test_dataset_config_list:
if test_dataset_config["name"] not in seen_name:
seen_name.add(test_dataset_config["name"])
else:
raise ValueError("Duplicate test dataset name: {}".format(test_dataset_config["name"]))
test_set = DatasetFactory.create(test_dataset_config)
self.test_set_list.append(test_set)
del seen_name
self.print_info()
def run(self):
print("Inference start...")
self.test()
print("Inference finished!")
def test(self):
self.pipeline.eval()
with torch.no_grad():
for dataset_idx, test_set in enumerate(self.test_set_list):
test_set_name = self.test_dataset_config_list[dataset_idx]["name"]
ratio = self.test_dataset_config_list[dataset_idx]["ratio"]
test_loader = test_set.get_loader()
loop = tqdm(enumerate(test_loader), total=int(len(test_loader)))
for i, data in loop:
test_set.process_batch(data, self.device)
output = self.pipeline(data, Pipeline.TEST_MODE)
self.save_output(output, data, test_set_name, i)
loop.set_description(
f'Inference (Test: {test_set_name}, ratio={ratio})')
def save_output(self, output, data, test_set_name, idx):
results_dir = os.path.join(str(self.experiment_path), InferenceEngine.RESULTS_DIR_NAME)
if not os.path.exists(os.path.join(results_dir,test_set_name)):
os.makedirs(os.path.join(results_dir,test_set_name))
save_path = os.path.join(results_dir, test_set_name, f"{idx}.pkl")
data = {key: value for key, value in data.items() if key in self.save_data_keys}
output = {key: value for key, value in output.items() if key in self.save_output_keys}
output_converted = {key: value.cpu().numpy() if torch.is_tensor(value) else value for key, value in output.items()}
data_converted = {key: value.cpu().numpy() if torch.is_tensor(value) else value for key, value in data.items()}
with open(save_path, "wb") as f:
pickle.dump({"output":output_converted,"data":data_converted}, f)
def load_checkpoint(self, model_path):
self.pipeline.load(model_path)
print(f"Checkpoint loaded from {model_path}")
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
results_dir = os.path.join(str(self.experiment_path), InferenceEngine.RESULTS_DIR_NAME)
os.makedirs(results_dir)
def print_info(self):
def print_dataset(config, dataset):
print("\t name: {}".format(config["name"]))
print("\t source: {}".format(config["source"]))
print("\t data_type: {}".format(config["data_type"]))
print("\t total_length: {}".format(len(dataset)))
print("\t ratio: {}".format(config["ratio"]))
print()
super().print_info()
table_size = 70
print(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+')
print(self.pipeline)
print(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+')
for i, test_dataset_config in enumerate(self.test_dataset_config_list):
print(f"test dataset {i}: ")
print_dataset(test_dataset_config, self.test_set_list[i])
print(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+')
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/local_inference_config.yaml")
args = parser.parse_args()
infenrence_engine = InferenceEngine(args.config)
infenrence_engine.run()

71
runners/preprocessor.py Executable file
View File

@@ -0,0 +1,71 @@
import os
from abc import ABC, abstractmethod
import shutil
from configs.config import ConfigManager
from runners.runner import Runner
class Preprocessor(Runner, ABC):
DATA = "data"
def __init__(self, config_path):
super().__init__(config_path)
self.preprocess_config = ConfigManager.get("settings", "preprocess")
def load_experiment(self,backup_name=None):
super().load_experiment(backup_name)
exists_ok = self.experiments_config["keep_exists"]
if not exists_ok:
data_dir = os.path.join(str(self.experiment_path), Preprocessor.DATA)
shutil.rmtree(data_dir, ignore_errors=True)
os.makedirs(data_dir)
self.create_dataset_list()
def create_experiment(self,backup_name=None):
super().create_experiment(backup_name)
data_dir = os.path.join(str(self.experiment_path), Preprocessor.DATA)
os.makedirs(data_dir)
self.create_dataset_list()
def create_dataset_list(self):
dataset_list = self.preprocess_config["dataset_list"]
exists_ok = self.experiments_config["keep_exists"]
for dataset in dataset_list:
source = dataset["source"]
source_dir = os.path.join(str(self.experiment_path), Preprocessor.DATA, source)
if not os.path.exists(source_dir):
os.makedirs(source_dir,exist_ok=exists_ok)
dataset_name = dataset["data_type"]
dataset_dir = os.path.join(source_dir, dataset_name)
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir,exist_ok=exists_ok)
@abstractmethod
def get_dataloader(self, dataset_config):
pass
@abstractmethod
def get_model(self, model_config):
pass
@abstractmethod
def prediction(self, model, dataloader):
pass
@abstractmethod
def preprocess(self, predicted_data):
pass
@abstractmethod
def save_processed_data(self, processed_data, data_config=None):
pass
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="../configs/local_gsnet_preprocess_config.yaml")
args = parser.parse_args()
preproc = Preprocessor(args.config)

View File

View File

@@ -0,0 +1,409 @@
import os
import re
import sys
import numpy as np
import torch
import open3d as o3d
from torch.utils.data import DataLoader
path = os.path.abspath(__file__)
for i in range(4):
path = os.path.dirname(path)
PROJECT_ROOT = path
sys.path.append(PROJECT_ROOT)
GSNET_PROJECT_ROOT = os.path.join(PROJECT_ROOT, "baselines/grasping/GSNet")
sys.path.append(os.path.join(GSNET_PROJECT_ROOT, "pointnet2"))
sys.path.append(os.path.join(GSNET_PROJECT_ROOT, "utils"))
sys.path.append(os.path.join(GSNET_PROJECT_ROOT, "models"))
sys.path.append(os.path.join(GSNET_PROJECT_ROOT, "dataset"))
from utils.omni_util import OmniUtil
from utils.view_util import ViewUtil
from runners.preprocessors.grasping.abstract_grasping_preprocessor import GraspingPreprocessor
from configs.config import ConfigManager
from baselines.grasping.GSNet.models.graspnet import GraspNet
from baselines.grasping.GSNet.graspnetAPI.graspnetAPI.graspnet_eval import GraspGroup
from baselines.grasping.GSNet.dataset.graspnet_dataset import minkowski_collate_fn
from torch.utils.data import Dataset
class GSNetInferenceDataset(Dataset):
CAMERA_PARAMS_TEMPLATE = "camera_params_{}.json"
DISTANCE_TEMPLATE = "distance_to_camera_{}.npy"
RGB_TEMPLATE = "rgb_{}.png"
MASK_TEMPLATE = "semantic_segmentation_{}.png"
MASK_LABELS_TEMPLATE = "semantic_segmentation_labels_{}.json"
def __init__(
self,
source="nbv1",
data_type="sample",
data_dir="/mnt/h/AI/Datasets",
scene_pts_num=15000,
voxel_size=0.005,
):
self.data_dir = data_dir
self.scene_pts_num = scene_pts_num
self.data_path = str(os.path.join(self.data_dir, source, data_type))
self.scene_list = os.listdir(self.data_path)
self.data_list = self.get_datalist()
self.voxel_size = voxel_size
def __len__(self):
return len(self.data_list)
def __getitem__(self, index):
frame_path, target = self.data_list[index]
frame_data = self.load_frame_data(frame_path=frame_path, object_name=target)
return frame_data
def get_datalist(self):
scene_frame_list = []
for scene in self.scene_list:
scene_path = os.path.join(self.data_path, scene)
file_list = os.listdir(scene_path)
for file in file_list:
if file.startswith("camera_params"):
frame_index = re.findall(r"\d+", file)[0]
frame_path = os.path.join(scene_path, frame_index)
target_list = OmniUtil.get_object_list(frame_path)
for target in target_list:
scene_frame_list.append((frame_path,target))
if len(target_list) == 0:
scene_frame_list.append((frame_path, None))
print("Scene: ", scene, " has ", len(scene_frame_list), " frames")
return scene_frame_list
def load_frame_data(self, frame_path, object_name):
try:
target_list = OmniUtil.get_object_list(path=frame_path, contains_non_obj=True)
_, obj_pcl_dict = OmniUtil.get_segmented_points(
path=frame_path, target_list=target_list
)
obj_center = ViewUtil.get_object_center_from_pts_dict(object_name, obj_pcl_dict)
croped_pts_dict = ViewUtil.crop_pts_dict(obj_pcl_dict, obj_center, radius=0.2)
sampled_scene_pts, sampled_pts_dict = GSNetInferenceDataset.sample_dict_to_target_points(croped_pts_dict)
ret_dict = {
"frame_path": frame_path,
"point_clouds": sampled_scene_pts.astype(np.float32),
"coors": sampled_scene_pts.astype(np.float32) / self.voxel_size,
"feats": np.ones_like(sampled_scene_pts).astype(np.float32),
"obj_pcl_dict": sampled_pts_dict,
"object_name": object_name,
}
except Exception as e:
print("Error in loading frame data: ", e)
ret_dict = {
"frame_path": frame_path,
"point_clouds": np.zeros((self.scene_pts_num, 3)).astype(np.float32),
"coors": np.zeros((self.scene_pts_num, 3)).astype(np.float32),
"feats": np.ones((self.scene_pts_num, 3)).astype(np.float32),
"obj_pcl_dict": {},
"object_name": object_name,
"error": True
}
return ret_dict
def sample_points(points, target_num_points):
num_points = points.shape[0]
if num_points == 0:
return np.zeros((target_num_points, points.shape[1]))
if num_points > target_num_points:
indices = np.random.choice(num_points, target_num_points, replace=False)
else:
indices = np.random.choice(num_points, target_num_points, replace=True)
return points[indices]
def sample_dict_to_target_points(croped_pts_dict, total_points=15000):
all_sampled_points = []
sampled_pts_dict = {}
total_existing_points = sum([pts.shape[0] for pts in croped_pts_dict.values() if pts.shape[0] > 0])
if total_existing_points > total_points:
ratios = {name: len(pts) / total_existing_points for name, pts in croped_pts_dict.items() if pts.shape[0] > 0}
target_num_points = {name: int(ratio * total_points) for name, ratio in ratios.items()}
remaining_points = total_points - sum(target_num_points.values())
for name in target_num_points.keys():
if remaining_points > 0:
target_num_points[name] += 1
remaining_points -= 1
else:
target_num_points = {name: len(pts) for name, pts in croped_pts_dict.items()}
remaining_points = total_points - total_existing_points
additional_points = np.random.choice([name for name, pts in croped_pts_dict.items() if pts.shape[0] > 0], remaining_points, replace=True)
for name in additional_points:
target_num_points[name] += 1
for name, pts in croped_pts_dict.items():
if pts.shape[0] == 0:
sampled_pts_dict[name] = pts
continue
sampled_pts = GSNetInferenceDataset.sample_points(pts, target_num_points[name])
sampled_pts_dict[name] = sampled_pts
all_sampled_points.append(sampled_pts)
if len(all_sampled_points) > 0:
sampled_scene_pts = np.concatenate(all_sampled_points, axis=0)
else:
sampled_scene_pts = np.zeros((total_points, 3))
return sampled_scene_pts, sampled_pts_dict
@staticmethod
def sample_pcl(pcl, n_pts=1024):
indices = np.random.choice(pcl.shape[0], n_pts, replace=pcl.shape[0] < n_pts)
return pcl[indices, :]
class GSNetPreprocessor(GraspingPreprocessor):
GRASP_MAX_WIDTH = 0.1
GRASPNESS_THRESHOLD = 0.1
NUM_VIEW = 300
NUM_ANGLE = 12
NUM_DEPTH = 4
M_POINT = 1024
def __init__(self, config_path):
super().__init__(config_path)
def get_dataloader(self, dataset_config):
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
dataset = GSNetInferenceDataset(
source=dataset_config["source"],
data_type=dataset_config["data_type"],
data_dir=dataset_config["data_dir"],
scene_pts_num=dataset_config["scene_pts_num"],
voxel_size=dataset_config["voxel_size"],
)
print("Test dataset length: ", len(dataset))
dataloader = DataLoader(
dataset,
batch_size=dataset_config["batch_size"],
shuffle=False,
num_workers=0,
worker_init_fn=my_worker_init_fn,
collate_fn=minkowski_collate_fn,
)
print("Test dataloader length: ", len(dataloader))
return dataloader
def get_model(self, model_config=None):
model = GraspNet(seed_feat_dim=model_config["general"]["seed_feat_dim"], is_training=False)
model.to("cuda")
checkpoint = torch.load(model_config["general"]["checkpoint_path"])
model.load_state_dict(checkpoint["model_state_dict"])
start_epoch = checkpoint["epoch"]
print(
"-> loaded checkpoint %s (epoch: %d)" % (model_config["general"]["checkpoint_path"], start_epoch)
)
model.eval()
return model
def prediction(self, model, dataloader, require_gripper=False, top_k=10):
preds = {}
for idx, batch_data in enumerate(dataloader):
try:
if "error" in batch_data:
frame_path = batch_data["frame_path"][0]
object_name = batch_data["object_name"][0]
preds[frame_path] = {object_name: None}
print("No graspable points found at frame: ", frame_path)
continue
print("Processing batch: ", idx, "/", len(dataloader))
for key in batch_data:
if "list" in key:
for i in range(len(batch_data[key])):
for j in range(len(batch_data[key][i])):
batch_data[key][i][j] = batch_data[key][i][j].to("cuda")
elif not isinstance(batch_data[key], (list)):
batch_data[key] = batch_data[key].to("cuda")
with torch.no_grad():
end_points = model(batch_data)
if end_points is None:
frame_path = batch_data["frame_path"][0]
object_name = batch_data["object_name"][0]
preds[frame_path] = {object_name: None}
print("No graspable points found at frame: ", frame_path)
continue
grasp_preds = self.decode_pred(end_points)
standard_grasp_preds = GSNetPreprocessor.standard_pred_decode(end_points)
standard_preds = standard_grasp_preds[0].detach().cpu().numpy()
if require_gripper:
gg = GraspGroup(standard_preds)
gg = gg.nms()
gg = gg.sort_by_score()
grippers = gg.to_open3d_geometry_list()
gp_pts_list = np.asarray([np.asarray(gripper_mesh.sample_points_uniformly(48).points) for gripper_mesh in grippers], dtype=np.float16)
gp_score_list = gg.scores
for idx in range(len(batch_data["frame_path"])):
frame_path = batch_data["frame_path"][idx]
object_name = batch_data["object_name"][idx]
if frame_path not in preds:
preds[frame_path] = {object_name: {}}
preds[frame_path][object_name] = grasp_preds[idx]
preds[frame_path][object_name]["obj_pcl_dict"] = (
batch_data["obj_pcl_dict"][idx]
)
if require_gripper:
preds[frame_path][object_name]["gripper"] = {
"gripper_pose": gp_pts_list.tolist(),
"gripper_score": gp_score_list.tolist()
}
except Exception as e:
print("Error in inference: ", e)
# ----- Debug Trace ----- #
print(batch_data["frame_path"])
import ipdb; ipdb.set_trace()
frame_path = batch_data["frame_path"][idx]
object_name = batch_data["object_name"][idx]
preds[frame_path] = {object_name: {}}
# ------------------------ #
results = {}
for frame_path in preds:
try:
predict_results = {}
for object_name in preds[frame_path]:
if object_name is None or preds[frame_path][object_name] == None:
continue
grasp_center = preds[frame_path][object_name]["grasp_center"]
grasp_score = preds[frame_path][object_name]["grasp_score"]
obj_pcl_dict = preds[frame_path][object_name]["obj_pcl_dict"]
if require_gripper:
gripper = preds[frame_path][object_name]["gripper"]
grasp_center = grasp_center.unsqueeze(1)
obj_pcl = obj_pcl_dict[object_name]
obj_pcl = torch.tensor(
obj_pcl.astype(np.float32), device=grasp_center.device
)
obj_pcl = obj_pcl.unsqueeze(0)
grasp_obj_table = (grasp_center == obj_pcl).all(axis=-1)
obj_pts_on_grasp = grasp_obj_table.any(axis=1)
obj_graspable_pts = grasp_center[obj_pts_on_grasp].squeeze(1)
obj_graspable_pts_score = grasp_score[obj_pts_on_grasp]
obj_graspable_pts_info = torch.cat(
[obj_graspable_pts, obj_graspable_pts_score], dim=1
)
if obj_graspable_pts.shape[0] == 0:
obj_graspable_pts_info = torch.zeros((top_k, 4))
ranked_obj_graspable_pts_info = self.sample_graspable_pts(
obj_graspable_pts_info, top_k=top_k
)
predict_results[object_name] = {
"positions": ranked_obj_graspable_pts_info[:, :3]
.cpu()
.numpy()
.tolist(),
"scores": ranked_obj_graspable_pts_info[:, 3]
.cpu()
.numpy()
.tolist(),
}
if require_gripper:
results[frame_path] = {"predicted_results": predict_results, "gripper": gripper}
else:
results[frame_path] = {"predicted_results": predict_results}
except Exception as e:
print("Error in postprocessing: ", e)
# ----- Debug Trace ----- #
print(frame_path)
import ipdb; ipdb.set_trace()
# ------------------------ #
print("Prediction finished")
return results
@staticmethod
def sample_graspable_pts(graspable_pts, top_k=50):
if graspable_pts.shape[0] < top_k:
sampled_indices = torch.randint(0, graspable_pts.shape[0], (top_k,))
graspable_pts = graspable_pts[sampled_indices]
sorted_indices = torch.argsort(graspable_pts[:, 3], descending=True)
sampled_indices = graspable_pts[sorted_indices][:top_k]
return sampled_indices
def decode_pred(self, end_points):
batch_size = len(end_points["point_clouds"])
grasp_preds = []
for i in range(batch_size):
grasp_center = end_points["xyz_graspable"][i].float()
num_pts = end_points["xyz_graspable"][i].shape[0]
grasp_score = end_points["grasp_score_pred"][i].float()
grasp_score = grasp_score.view(num_pts, -1)
grasp_score, _ = torch.max(grasp_score, -1) # [M_POINT]
grasp_score = grasp_score.view(-1, 1)
grasp_preds.append(
{"grasp_center": grasp_center, "grasp_score": grasp_score}
)
return grasp_preds
@staticmethod
def standard_pred_decode(end_points):
batch_size = len(end_points['point_clouds'])
grasp_preds = []
for i in range(batch_size):
grasp_center = end_points['xyz_graspable'][i].float()
num_pts = end_points["xyz_graspable"][i].shape[0]
grasp_score = end_points['grasp_score_pred'][i].float()
grasp_score = grasp_score.view(num_pts, -1)
grasp_score, grasp_score_inds = torch.max(grasp_score, -1) # [M_POINT]
grasp_score = grasp_score.view(-1, 1)
grasp_angle = (grasp_score_inds // GSNetPreprocessor.NUM_DEPTH) * np.pi / 12
grasp_depth = (grasp_score_inds % GSNetPreprocessor.NUM_DEPTH + 1) * 0.01
grasp_depth = grasp_depth.view(-1, 1)
grasp_width = 1.2 * end_points['grasp_width_pred'][i] / 10.
grasp_width = grasp_width.view(GSNetPreprocessor.M_POINT, GSNetPreprocessor.NUM_ANGLE*GSNetPreprocessor.NUM_DEPTH)
grasp_width = torch.gather(grasp_width, 1, grasp_score_inds.view(-1, 1))
grasp_width = torch.clamp(grasp_width, min=0., max=GSNetPreprocessor.GRASP_MAX_WIDTH)
approaching = -end_points['grasp_top_view_xyz'][i].float()
grasp_rot = GSNetPreprocessor.batch_viewpoint_params_to_matrix(approaching, grasp_angle)
grasp_rot = grasp_rot.view(GSNetPreprocessor.M_POINT, 9)
# merge preds
grasp_height = 0.02 * torch.ones_like(grasp_score)
obj_ids = -1 * torch.ones_like(grasp_score)
grasp_preds.append(
torch.cat([grasp_score, grasp_width, grasp_height, grasp_depth, grasp_rot, grasp_center, obj_ids], axis=-1))
return grasp_preds
@staticmethod
def batch_viewpoint_params_to_matrix(batch_towards, batch_angle):
axis_x = batch_towards
ones = torch.ones(axis_x.shape[0], dtype=axis_x.dtype, device=axis_x.device)
zeros = torch.zeros(axis_x.shape[0], dtype=axis_x.dtype, device=axis_x.device)
axis_y = torch.stack([-axis_x[:, 1], axis_x[:, 0], zeros], dim=-1)
mask_y = (torch.norm(axis_y, dim=-1) == 0)
axis_y[mask_y, 1] = 1
axis_x = axis_x / torch.norm(axis_x, dim=-1, keepdim=True)
axis_y = axis_y / torch.norm(axis_y, dim=-1, keepdim=True)
axis_z = torch.cross(axis_x, axis_y)
sin = torch.sin(batch_angle)
cos = torch.cos(batch_angle)
R1 = torch.stack([ones, zeros, zeros, zeros, cos, -sin, zeros, sin, cos], dim=-1)
R1 = R1.reshape([-1, 3, 3])
R2 = torch.stack([axis_x, axis_y, axis_z], dim=-1)
batch_matrix = torch.matmul(R2, R1)
return batch_matrix
if __name__ == "__main__":
gs_preproc = GSNetPreprocessor(config_path="configs/server_gsnet_preprocess_config.yaml")
gs_preproc.run()

View File

View File

@@ -0,0 +1,65 @@
import os
import json
import numpy as np
from abc import abstractmethod, ABC
from runners.preprocessor import Preprocessor
from utils.omni_util import OmniUtil
class GraspingPreprocessor(Preprocessor, ABC):
def __init__(self, config_path):
super().__init__(config_path)
self.load_experiment("GSNet")
self.dataset_list_config = self.preprocess_config["dataset_list"]
self.model_config = self.preprocess_config["model"]
def run(self):
"""
- for each dataset
--- get its dataloader
--- for each batch, do prediction
--- preprocess the collected results
--- save processed results
"""
for dataset_config in self.dataset_list_config:
dataloader = self.get_dataloader(dataset_config)
model = self.get_model(self.model_config)
predicted_data = self.prediction(model, dataloader)
processed_data = self.preprocess(predicted_data)
self.save_processed_data(processed_data,dataset_config)
def preprocess(self, predicted_data, require_gripper=False):
for frame_path in predicted_data:
frame_obj_info = predicted_data[frame_path]["predicted_results"]
if require_gripper:
gripper = predicted_data[frame_path]["gripper"]
predicted_data[frame_path]["gripper"] = gripper
predicted_data[frame_path]["sum_score"] = {}
predicted_data[frame_path]["avg_score"] = {}
for obj_name in frame_obj_info:
obj_score_sum = np.sum(frame_obj_info[obj_name]["scores"])
obj_score_avg = np.mean(frame_obj_info[obj_name]["scores"])
predicted_data[frame_path]["sum_score"][obj_name] = obj_score_sum
predicted_data[frame_path]["avg_score"][obj_name] = obj_score_avg
return predicted_data
def save_processed_data(self, processed_data, data_config=None):
data_path = os.path.join(str(self.experiment_path), Preprocessor.DATA, data_config["source"], data_config["data_type"])
for frame_path in processed_data:
data_item = processed_data[frame_path]
scene = os.path.basename(os.path.dirname(frame_path))
idx = os.path.basename(frame_path)
target_scene_path = os.path.join(str(data_path), scene)
if not os.path.exists(target_scene_path):
os.makedirs(target_scene_path)
label_save_path = os.path.join(
target_scene_path,OmniUtil.SCORE_LABEL_TEMPLATE.format(idx)
)
with open(label_save_path, "w+") as f:
json.dump(data_item, f)
print("Processed data saved to: ", data_path)

View File

@@ -0,0 +1,185 @@
import os
import re
import sys
import numpy as np
import torch
import trimesh
from torch.utils.data import DataLoader
path = os.path.abspath(__file__)
for i in range(4):
path = os.path.dirname(path)
PROJECT_ROOT = path
sys.path.append(PROJECT_ROOT)
from utils.omni_util import OmniUtil
from utils.view_util import ViewUtil
from runners.preprocessors.object_pose.abstract_object_pose_preprocessor import ObjectPosePreprocessor
from configs.config import ConfigManager
from torch.utils.data import Dataset
class ObjectPoseInferenceDataset(Dataset):
CAMERA_PARAMS_TEMPLATE = "camera_params_{}.json"
DISTANCE_TEMPLATE = "distance_to_camera_{}.npy"
RGB_TEMPLATE = "rgb_{}.png"
MASK_TEMPLATE = "semantic_segmentation_{}.png"
MASK_LABELS_TEMPLATE = "semantic_segmentation_labels_{}.json"
def __init__(
self,
source="nbv1",
data_type="sample",
data_dir="/mnt/h/AI/Datasets",
):
self.data_dir = data_dir
self.empty_frame = set()
self.data_path = str(os.path.join(self.data_dir, source, data_type))
self.scene_list = os.listdir(self.data_path)
self.data_list = self.get_datalist()
self.object_data_list = self.get_object_datalist()
self.object_name_list = list(self.object_data_list.keys())
self.mesh_dir_path = os.path.join(self.data_dir, source, "objects")
self.meshes = {}
self.load_all_meshes()
def __len__(self):
return len(self.data_list)
def __getitem__(self, index):
frame_path, target = self.data_list[index]
frame_data = self.load_frame_data(frame_path=frame_path, object_name=target)
return frame_data
def load_all_meshes(self):
object_name_list = os.listdir(self.mesh_dir_path)
for object_name in object_name_list:
mesh_path = os.path.join(self.mesh_dir_path, object_name, "Scan", "Simp.obj")
mesh = trimesh.load(mesh_path)
object_model_scale = [0.001, 0.001, 0.001]
mesh.apply_scale(object_model_scale)
self.meshes[object_name] = mesh
def get_datalist(self):
for scene in self.scene_list:
scene_path = os.path.join(self.data_path, scene)
file_list = os.listdir(scene_path)
scene_frame_list = []
for file in file_list:
if file.startswith("camera_params"):
frame_index = re.findall(r"\d+", file)[0]
frame_path = os.path.join(scene_path, frame_index)
target_list = OmniUtil.get_object_list(frame_path)
for target in target_list:
scene_frame_list.append((frame_path,target))
if len(target_list) == 0:
self.empty_frame.add(frame_path)
return scene_frame_list
def get_object_datalist(self):
object_datalist = {}
for data_item in self.data_list:
frame_path, target = data_item
if target not in object_datalist:
object_datalist[target] = []
object_datalist[target].append(frame_path)
return object_datalist
def get_object_data_batch(self, object_name):
object_data_list = self.object_data_list[object_name]
batch_data = {"frame_path_list":[],
"rgb_batch":[],
"depth_batch":[],
"seg_batch":[],
"gt_pose_batch":[],
"K":None,
"mesh":None}
for frame_path in object_data_list:
frame_data = self.load_frame_data(frame_path, object_name)
batch_data["frame_path_list"].append(frame_path)
batch_data["rgb_batch"].append(frame_data["rgb"])
batch_data["depth_batch"].append(frame_data["depth"])
batch_data["seg_batch"].append(frame_data["seg"])
batch_data["gt_pose_batch"].append(frame_data["gt_pose"])
batch_data["K"] = frame_data["K"]
batch_data["mesh"] = frame_data["mesh"]
batch_data["rgb_batch"] = np.asarray(batch_data["rgb_batch"],dtype=np.uint8)
batch_data["depth_batch"] = np.asarray(batch_data["depth_batch"])
batch_data["seg_batch"] = np.asarray(batch_data["seg_batch"])
batch_data["gt_pose_batch"] = np.asarray(batch_data["gt_pose_batch"])
return batch_data
def load_frame_data(self, frame_path, object_name):
rgb = OmniUtil.get_rgb(frame_path)
depth = OmniUtil.get_depth(frame_path)
seg = OmniUtil.get_single_seg(frame_path, object_name)
K = OmniUtil.get_intrinsic_matrix(frame_path)
gt_obj_pose = OmniUtil.get_o2c_pose(frame_path, object_name)
ret_dict = {
"frame_path": frame_path,
"rgb": rgb.astype(np.float32),
"depth": depth.astype(np.float32),
"seg": seg,
"K": K.astype(np.float32),
"object_name": object_name,
"mesh": self.meshes[object_name],
"gt_pose": gt_obj_pose.astype(np.float32)
}
return ret_dict
class FoundationPosePreprocessor(ObjectPosePreprocessor):
def __init__(self, config_path):
super().__init__(config_path)
def run(self):
for dataset_config in self.dataset_list_config:
dataset = ObjectPoseInferenceDataset(
source=dataset_config["source"],
data_type=dataset_config["data_type"],
data_dir=dataset_config["data_dir"],
)
result = self.prediction(dataset)
self.save_processed_data(result, dataset_config)
def prediction(self, dataset):
final_result = {}
cnt = 0
for object_name in dataset.object_name_list:
cnt += 1
print(f"Processing object: {object_name} ({cnt}/{len(dataset.object_name_list)})")
object_data_batch = dataset.get_object_data_batch(object_name)
print(f"batch size of object {object_name}: {len(object_data_batch['frame_path_list'])}")
pose_batch, result_batch = ViewUtil.get_object_pose_batch(
object_data_batch["K"],
object_data_batch["mesh"],
object_data_batch["rgb_batch"],
object_data_batch["depth_batch"],
object_data_batch["seg_batch"],
object_data_batch["gt_pose_batch"],
self.web_server_config["port"]
)
for frame_path, pred_pose,gt_pose,result in zip(object_data_batch["frame_path_list"], pose_batch,object_data_batch["gt_pose_batch"],result_batch):
if frame_path not in final_result:
final_result[frame_path]={}
final_result[frame_path][object_name] = {"gt_pose":gt_pose.tolist(),"pred_pose":pred_pose.tolist(),"eval_result":result}
for frame_path in dataset.empty_frame:
final_result[frame_path] = {}
return final_result
if __name__ == "__main__":
config_path = os.path.join(PROJECT_ROOT, "configs/server_object_preprocess_config.yaml")
preprocessor = FoundationPosePreprocessor(config_path)
preprocessor.run()

View File

@@ -0,0 +1,51 @@
import os
import json
import numpy as np
from abc import abstractmethod, ABC
from runners.preprocessor import Preprocessor
from utils.omni_util import OmniUtil
class ObjectPosePreprocessor(Preprocessor, ABC):
def __init__(self, config_path):
super().__init__(config_path)
self.load_experiment("GSNet")
self.dataset_list_config = self.preprocess_config["dataset_list"]
self.web_server_config = self.preprocess_config["web_server"]
def run(self):
pass
def get_model(self, model_config):
pass
def get_dataloader(self, dataset_config):
pass
def preprocess(self, predicted_data):
pass
def prediction(self, model, dataloader):
pass
def save_processed_data(self, processed_data, data_config=None):
data_path = os.path.join(str(self.experiment_path), Preprocessor.DATA, data_config["source"], data_config["data_type"])
# ----- Debug Trace ----- #
import ipdb; ipdb.set_trace()
# ------------------------ #
for frame_path in processed_data:
data_item = processed_data[frame_path]
scene = os.path.basename(os.path.dirname(frame_path))
idx = os.path.basename(frame_path)
target_scene_path = os.path.join(str(data_path), scene)
if not os.path.exists(target_scene_path):
os.makedirs(target_scene_path)
label_save_path = os.path.join(
target_scene_path,OmniUtil.SCORE_LABEL_TEMPLATE.format(idx)
)
with open(label_save_path, "w+") as f:
json.dump(data_item, f)
print("Processed data saved to: ", data_path)

View File

@@ -0,0 +1,47 @@
import os
import json
import numpy as np
from abc import abstractmethod, ABC
from runners.preprocessor import Preprocessor
from utils.omni_util import OmniUtil
class RGBFeatPreprocessor(Preprocessor, ABC):
def __init__(self, config_path):
super().__init__(config_path)
self.load_experiment("RGBFeat")
self.dataset_list_config = self.preprocess_config["dataset_list"]
self.model_config = self.preprocess_config["model"]
def run(self):
"""
- for each dataset
--- get its dataloader
--- for each batch, do prediction
--- preprocess the collected results
--- save processed results
"""
for dataset_config in self.dataset_list_config:
dataloader = self.get_dataloader(dataset_config)
model = self.get_model(self.model_config)
predicted_data = self.prediction(model, dataloader)
self.save_processed_data(predicted_data,dataset_config)
def preprocess(self, predicted_data):
pass
def save_processed_data(self, processed_data, data_config=None):
data_path = os.path.join(str(self.experiment_path), Preprocessor.DATA, data_config["source"], data_config["data_type"])
for frame_path in processed_data:
rgb_feat = processed_data[frame_path]
scene = os.path.basename(os.path.dirname(frame_path))
idx = os.path.basename(frame_path)
target_scene_path = os.path.join(str(data_path), scene)
if not os.path.exists(target_scene_path):
os.makedirs(target_scene_path)
rgb_feat_save_path = os.path.join(
target_scene_path,OmniUtil.RGB_FEAT_TEMPLATE.format(idx))
np.save(rgb_feat_save_path, rgb_feat)
print("Processed data saved to: ", data_path)

View File

@@ -0,0 +1,128 @@
import os
import sys
path = os.path.abspath(__file__)
for i in range(4):
path = os.path.dirname(path)
PROJECT_ROOT = path
sys.path.append(PROJECT_ROOT)
import re
import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from utils.omni_util import OmniUtil
from runners.preprocessors.rgb_feat.abstract_rgb_feat_preprocessor import RGBFeatPreprocessor
from modules.rgb_encoder.dinov2_encoder import Dinov2Encoder
from PIL import Image
from torch.utils.data import Dataset
class Dinov2InferenceDataset(Dataset):
RGB_TEMPLATE = "rgb_{}.png"
def __init__(
self,
source="nbv1",
data_type="sample",
data_dir="/mnt/h/AI/Datasets",
image_size = 480
):
self.data_dir = data_dir
self.data_path = str(os.path.join(self.data_dir, source, data_type))
self.scene_list = os.listdir(self.data_path)
self.data_list = self.get_datalist()
self.transform = transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(int(image_size//14)*14),
transforms.ToTensor(),
transforms.Normalize(mean=0.5, std=0.2)
])
def __len__(self):
return len(self.data_list)
def __getitem__(self, index):
frame_path = self.data_list[index]
frame_data = self.load_frame_data(frame_path=frame_path)
return frame_data
def get_datalist(self):
for scene in self.scene_list:
scene_path = os.path.join(self.data_path, scene)
file_list = os.listdir(scene_path)
scene_frame_list = []
for file in file_list:
if file.startswith("camera_params"):
frame_index = re.findall(r"\d+", file)[0]
frame_path = os.path.join(scene_path, frame_index)
scene_frame_list.append(frame_path)
return scene_frame_list
def load_frame_data(self, frame_path):
rgb = OmniUtil.get_rgb(frame_path)
rgb = Image.fromarray(rgb)
rgb = self.transform(rgb)
ret_dict = {"rgb": rgb, "frame_path": frame_path}
return ret_dict
class Dinov2Preprocessor(RGBFeatPreprocessor):
MODULE_NAME: str = "dinov2"
def __init__(self, config_path):
super().__init__(config_path)
def get_dataloader(self, dataset_config):
dataset = Dinov2InferenceDataset(
source=dataset_config["source"],
data_type=dataset_config["data_type"],
data_dir=dataset_config["data_dir"],
image_size = dataset_config["image_size"]
)
print("Test dataset length: ", len(dataset))
dataloader = DataLoader(
dataset,
batch_size=dataset_config["batch_size"],
shuffle=False,
num_workers=0,
)
print("Test dataloader length: ", len(dataloader))
return dataloader
def get_model(self, model_config=None):
model = Dinov2Encoder(model_config["general"]["model_name"])
model.to("cuda")
return model
def prediction(self, model, dataloader):
results = {}
total = len(dataloader)
for idx, batch_data in enumerate(dataloader):
rgb = batch_data["rgb"].to("cuda")
with torch.no_grad():
rgb_feat = model.encode_rgb(rgb)
frame_paths = batch_data["frame_path"]
for i, frame_path in enumerate(frame_paths):
results[frame_path] = rgb_feat[i].cpu().numpy()
print(f"Processed {idx}/{total} batches")
return results
def visualize_feature(self, rgb_feat, model_name, save_path=None):
model = Dinov2Encoder(model_name)
model.visualize_features(rgb_feat,save_path)
if __name__ == "__main__":
rgb_preproc = Dinov2Preprocessor(config_path="configs/server_rgb_feat_preprocess_config.yaml")
#ßrgb_preproc.run()
rgb_feat = np.load("experiments/rgb_feat_preprocessor_test/data/nbv1/sample/scene_0/rgb_feat_0405.npy")
rgb_preproc.visualize_feature(rgb_feat, "dinov2_vits14", './visualize.png')

60
runners/runner.py Executable file
View File

@@ -0,0 +1,60 @@
import os
import sys
import time
from abc import abstractmethod, ABC
import numpy as np
import torch
from configs.config import ConfigManager
class Runner(ABC):
@abstractmethod
def __init__(self, config_path):
ConfigManager.load_config_with(config_path)
ConfigManager.print_config()
seed = ConfigManager.get("settings", "general", "seed")
self.device = ConfigManager.get("settings", "general", "device")
self.cuda_visible_devices = ConfigManager.get("settings","general","cuda_visible_devices")
os.environ["CUDA_VISIBLE_DEVICES"] = self.cuda_visible_devices
self.experiments_config = ConfigManager.get("settings", "experiment")
self.experiment_path = os.path.join(self.experiments_config["root_dir"], self.experiments_config["name"])
np.random.seed(seed)
torch.manual_seed(seed)
lt = time.localtime()
self.file_name = f"{lt.tm_year}_{lt.tm_mon}_{lt.tm_mday}_{lt.tm_hour}h{lt.tm_min}m{lt.tm_sec}s"
@abstractmethod
def run(self):
pass
@abstractmethod
def load_experiment(self, backup_name=None):
if not os.path.exists(self.experiment_path):
print(f"experiments environment {self.experiments_config['name']} does not exists.")
self.create_experiment(backup_name)
else:
print(f"experiments environment {self.experiments_config['name']}")
backup_config_dir = os.path.join(str(self.experiment_path), "configs")
if not os.path.exists(backup_config_dir):
os.makedirs(backup_config_dir)
ConfigManager.backup_config_to(backup_config_dir, self.file_name, backup_name)
@abstractmethod
def create_experiment(self, backup_name=None):
print("creating experiment: " + self.experiments_config["name"])
os.makedirs(self.experiment_path)
backup_config_dir = os.path.join(str(self.experiment_path), "configs")
os.makedirs(backup_config_dir)
ConfigManager.backup_config_to(backup_config_dir, self.file_name, backup_name)
log_dir = os.path.join(str(self.experiment_path), "log")
os.makedirs(log_dir)
cache_dir = os.path.join(str(self.experiment_path), "cache")
os.makedirs(cache_dir)
def print_info(self):
table_size = 80
print("+" + "-" * table_size + "+")
print(f"| Experiment <{self.experiments_config['name']}>")
print("+" + "-" * table_size + "+")

37
runners/tensorboard_runner.py Executable file
View File

@@ -0,0 +1,37 @@
import os
import subprocess
import sys
def find_free_port(start_port):
import socket
port = start_port
while True:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
if s.connect_ex(('localhost', port)) != 0:
return port
port += 1
def run(exp_name, exp_root="experiments",port=None):
port = 6007 if port is None else port
max_attempts = 10
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
tensorboard_root = os.path.join(project_root, exp_root, exp_name, "tensorboard")
for attempt in range(max_attempts):
try:
print(f"Trying to launch TensorBoard on port {port}...")
subprocess.check_call([
sys.executable, "-m", "tensorboard.main",
f"--logdir={tensorboard_root}",
f"--port={port}"
])
break
except subprocess.CalledProcessError as e:
print(f"Port {port} is in use, trying next port...")
port = find_free_port(port + 1)
else:
print("Failed to launch TensorBoard after multiple attempts.")
if __name__ == "__main__":
exp_root = "experiments"
exp_name = "sample_train_100_item_overfit_foreground_0"
run(exp_name,exp_root,port=6009)

33
runners/tester.py Executable file
View File

@@ -0,0 +1,33 @@
import os
from configs.config import ConfigManager
from runners.runner import Runner
class Tester(Runner):
def __init__(self, config_path):
super().__init__(config_path)
self.pipeline_config = ConfigManager.get("settings", "pipeline")
self.current_epoch = 0
def run(self):
pass
def load_experiment(self):
super().load_experiment()
def create_experiment(self):
super().create_experiment()
experiment_path = os.path.join(self.experiments_config["root_dir"], self.experiments_config["name"])
result_dir = os.path.join(str(experiment_path), "results")
os.makedirs(result_dir)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/local_train_config.yaml")
args = parser.parse_args()
tester = Tester(args.config)
tester.run()

257
runners/trainer.py Executable file
View File

@@ -0,0 +1,257 @@
import os
import sys
from datetime import datetime
import torch
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
path = os.path.abspath(__file__)
for i in range(2):
path = os.path.dirname(path)
PROJECT_ROOT = path
sys.path.append(PROJECT_ROOT)
from configs.config import ConfigManager
from datasets.dataset_factory import DatasetFactory
from optimizers.optimizer_factory import OptimizerFactory
from evaluations.eval_function_factory import EvalFunctionFactory
from losses.loss_function_factory import LossFunctionFactory
from modules.pipeline import Pipeline
from runners.runner import Runner
from utils.file_util import FileUtil
from utils.tensorboard_util import TensorboardWriter
from annotations.external_module import EXTERNAL_FREEZE_MODULES
class Trainer(Runner):
CHECKPOINT_DIR_NAME: str = 'checkpoints'
TENSORBOARD_DIR_NAME: str = 'tensorboard'
LOG_DIR_NAME: str = 'log'
def __init__(self, config_path):
super().__init__(config_path)
tensorboard_path = os.path.join(self.experiment_path, Trainer.TENSORBOARD_DIR_NAME)
''' Pipeline '''
self.pipeline_config = ConfigManager.get("settings", "pipeline")
self.parallel = ConfigManager.get("settings","general","parallel")
self.pipeline = Pipeline(self.pipeline_config)
if self.parallel and self.device == "cuda":
self.pipeline = torch.nn.DataParallel(self.pipeline)
self.pipeline = self.pipeline.to(self.device)
''' Experiment '''
self.current_epoch = 0
self.max_epochs = self.experiments_config["max_epochs"]
self.test_first = self.experiments_config["test_first"]
self.load_experiment("train")
''' Train '''
self.train_config = ConfigManager.get("settings", "train")
self.train_dataset_config = self.train_config["dataset"]
self.train_set = DatasetFactory.create(self.train_dataset_config)
self.optimizer = OptimizerFactory.create(self.train_config["optimizer"], self.pipeline.parameters())
self.train_writer = SummaryWriter(
log_dir=os.path.join(tensorboard_path, f"[train]{self.train_dataset_config['name']}"))
''' Test '''
self.test_config = ConfigManager.get("settings", "test")
self.test_dataset_config_list = self.test_config["dataset_list"]
self.test_set_list = []
self.test_writer_list = []
seen_name = set()
for test_dataset_config in self.test_dataset_config_list:
if test_dataset_config["name"] not in seen_name:
seen_name.add(test_dataset_config["name"])
else:
raise ValueError("Duplicate test dataset name: {}".format(test_dataset_config["name"]))
test_set = DatasetFactory.create(test_dataset_config)
test_writer = SummaryWriter(
log_dir=os.path.join(tensorboard_path, f"[test]{test_dataset_config['name']}"))
self.test_set_list.append(test_set)
self.test_writer_list.append(test_writer)
del seen_name
self.print_info()
def run(self):
save_interval = self.experiments_config["save_checkpoint_interval"]
if self.current_epoch != 0:
print("Continue training from epoch {}.".format(self.current_epoch))
else:
print("Start training from initial model.")
if self.test_first:
print("Do test first.")
self.test()
while self.current_epoch < self.max_epochs:
self.current_epoch += 1
self.train()
self.test()
if self.current_epoch % save_interval == 0:
self.save_checkpoint()
self.save_checkpoint(is_last=True)
def train(self):
self.pipeline.train()
train_set_name = self.train_dataset_config["name"]
ratio = self.train_dataset_config["ratio"]
train_loader = self.train_set.get_loader(device="cuda", shuffle=True)
loop = tqdm(enumerate(train_loader), total=len(train_loader))
loader_length = len(train_loader)
for i, data in loop:
self.train_set.process_batch(data, self.device)
loss_dict = self.train_step(data)
loop.set_description(
f'Epoch [{self.current_epoch}/{self.max_epochs}] (Train: {train_set_name}, ratio={ratio})')
loop.set_postfix(loss=loss_dict)
curr_iters = (self.current_epoch - 1) * loader_length + i
TensorboardWriter.write_tensorboard(self.train_writer, "iter", loss_dict, curr_iters)
def train_step(self, data):
self.optimizer.zero_grad()
output = self.pipeline(data, Pipeline.TRAIN_MODE)
total_loss, loss_dict = self.loss_fn(output, data)
total_loss.backward()
self.optimizer.step()
for k, v in loss_dict.items():
loss_dict[k] = round(v, 5)
return loss_dict
def loss_fn(self, output, data):
loss_config = self.train_config["losses"]
loss_dict = {}
total_loss = torch.tensor(0.0, dtype=torch.float32, device=self.device)
for key in loss_config:
weight = loss_config[key]
target_loss_fn = LossFunctionFactory.create(key)
loss = target_loss_fn(output, data)
loss_dict[key] = loss.item()
total_loss += weight * loss
loss_dict['total_loss'] = total_loss.item()
return total_loss, loss_dict
def test(self):
self.pipeline.eval()
with torch.no_grad():
for dataset_idx, test_set in enumerate(self.test_set_list):
eval_list = self.test_dataset_config_list[dataset_idx]["eval_list"]
test_set_name = self.test_dataset_config_list[dataset_idx]["name"]
ratio = self.test_dataset_config_list[dataset_idx]["ratio"]
writer = self.test_writer_list[dataset_idx]
output_list = []
data_list = []
test_loader = test_set.get_loader("cpu")
loop = tqdm(enumerate(test_loader), total=int(len(test_loader)))
for i, data in loop:
test_set.process_batch(data, self.device)
output = self.pipeline(data, Pipeline.TEST_MODE)
output_list.append(output)
data_list.append(data)
loop.set_description(
f'Epoch [{self.current_epoch}/{self.max_epochs}] (Test: {test_set_name}, ratio={ratio})')
result_dict = self.eval_fn(output_list, data_list, eval_list)
TensorboardWriter.write_tensorboard(writer, "epoch", result_dict, self.current_epoch - 1)
@staticmethod
def eval_fn(output_list, data_list, eval_list):
target_eval_fn = EvalFunctionFactory.create(eval_list)
result_dict = target_eval_fn(output_list, data_list)
return result_dict
def get_checkpoint_path(self, is_last=False):
return os.path.join(self.experiment_path, Trainer.CHECKPOINT_DIR_NAME,
"Epoch_{}.pth".format(
self.current_epoch if self.current_epoch != -1 and not is_last else "last"))
def load_checkpoint(self, is_last=False):
self.load(self.get_checkpoint_path(is_last))
print(f"Loaded checkpoint from {self.get_checkpoint_path(is_last)}")
if is_last:
checkpoint_root = os.path.join(self.experiment_path, Trainer.CHECKPOINT_DIR_NAME)
meta_path = os.path.join(checkpoint_root, "meta.json")
if not os.path.exists(meta_path):
raise FileNotFoundError(
"No checkpoint meta.json file in the experiment {}".format(self.experiments_config["name"]))
meta = FileUtil.load_json("meta.json", checkpoint_root)
self.current_epoch = meta["last_epoch"]
def save_checkpoint(self, is_last=False):
self.save(self.get_checkpoint_path(is_last))
if not is_last:
print(f"Checkpoint at epoch {self.current_epoch} saved to {self.get_checkpoint_path(is_last)}")
else:
meta = {
"last_epoch": self.current_epoch,
"time": str(datetime.now())
}
checkpoint_root = os.path.join(self.experiment_path, Trainer.CHECKPOINT_DIR_NAME)
FileUtil.save_json(meta, "meta.json", checkpoint_root)
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
if self.experiments_config["use_checkpoint"]:
self.current_epoch = self.experiments_config["epoch"]
self.load_checkpoint(is_last=(self.current_epoch == -1))
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
ckpt_dir = os.path.join(str(self.experiment_path), Trainer.CHECKPOINT_DIR_NAME)
os.makedirs(ckpt_dir)
tensorboard_dir = os.path.join(str(self.experiment_path), Trainer.TENSORBOARD_DIR_NAME)
os.makedirs(tensorboard_dir)
def load(self, path):
state_dict = torch.load(path)
if self.parallel:
self.pipeline.module.load_state_dict(state_dict)
else:
self.pipeline.load_state_dict(state_dict)
def save(self, path):
if self.parallel:
state_dict = self.pipeline.module.state_dict()
else:
state_dict = self.pipeline.state_dict()
for name, module in self.pipeline.named_modules():
if module.__class__ in EXTERNAL_FREEZE_MODULES:
if name in state_dict:
del state_dict[name]
torch.save(state_dict, path)
def print_info(self):
def print_dataset(config, dataset):
print("\t name: {}".format(config["name"]))
print("\t source: {}".format(config["source"]))
print("\t data_type: {}".format(config["data_type"]))
print("\t total_length: {}".format(len(dataset)))
print("\t ratio: {}".format(config["ratio"]))
print()
super().print_info()
table_size = 70
print(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+')
print(self.pipeline)
print(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+')
print("train dataset: ")
print_dataset(self.train_dataset_config, self.train_set)
for i, test_dataset_config in enumerate(self.test_dataset_config_list):
print(f"test dataset {i}: ")
print_dataset(test_dataset_config, self.test_set_list[i])
print(f"{'+' + '-' * (table_size // 2)}----------{'-' * (table_size // 2)}" + '+')
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/server_train_config.yaml")
args = parser.parse_args()
trainer = Trainer(args.config)
trainer.run()

190
runners/view_generator.py Executable file
View File

@@ -0,0 +1,190 @@
import os
import pickle
import pybullet as p
import pybullet_data
import numpy as np
import math
from flask import Flask, request, jsonify
import sys
path = os.path.abspath(__file__)
for i in range(2):
path = os.path.dirname(path)
PROJECT_ROOT = path
sys.path.append(PROJECT_ROOT)
from runners.runner import Runner
from configs.config import ConfigManager
class ViewGenerator(Runner):
def __init__(self, config_path, camera_params) -> None:
super().__init__(config_path)
self.data_dir = ConfigManager.get("settings", "dataset", "data_dir")
self.port = ConfigManager.get("settings", "web_api", "port")
self.camera_params = camera_params
self.object_model_scale = [0.001, 0.001, 0.001]
self.segmentation_labels = {}
self.app = Flask(__name__)
self._init_routes()
def create_experiment(self, backup_name=None):
return super().create_experiment(backup_name)
def load_experiment(self, backup_name=None):
return super().load_experiment(backup_name)
def _init_routes(self):
@self.app.route("/get_images", methods=["POST"])
def get_images_api():
data = request.get_json()
camera_pose = data["camera_pose"]
scene = data["scene"]
data_type = data["data_type"]
source = data["source"]
scene_path = os.path.join(self.data_dir, source, data_type, scene)
model_dir = os.path.join(self.data_dir, source, "objects")
self.load_scene(scene_path,model_dir)
result = self.generate_images(camera_pose)
result = {
"rgb": result["rgb"].tolist(),
"depth": result["depth"].tolist(),
"segmentation": result["segmentation"].tolist(),
"segmentation_labels": result["segmentation_labels"],
"camera_params": result["camera_params"],
}
return jsonify(result)
def load_scene(self, scene_path, model_dir):
scene_path = os.path.join(scene_path, "scene.pickle")
self.scene = pickle.load(open(scene_path, "rb"))
self._initialize_pybullet_scene(model_dir)
def _initialize_pybullet_scene(self,model_dir):
if p.isConnected():
p.resetSimulation()
else:
p.connect(p.DIRECT)
p.setAdditionalSearchPath(pybullet_data.getDataPath())
p.setGravity(0, 0, 0)
p.loadURDF("plane100.urdf")
for obj_name in self.scene.keys():
orientation = self.scene[obj_name]["rotation"]
position = self.scene[obj_name]["position"]
class_name = obj_name[:-4]
obj_path = os.path.join(model_dir,class_name, obj_name, "Scan", "Simp.obj")
self._load_obj_to_pybullet(
obj_file_path=obj_path,
position=position,
orientation=orientation,
scale=self.object_model_scale,
)
def _load_obj_to_pybullet(self, obj_file_path, position, orientation, scale):
visual_ind = p.createVisualShape(
shapeType=p.GEOM_MESH,
fileName=obj_file_path,
rgbaColor=[1, 1, 1, 1],
specularColor=[0.4, 0.4, 0],
visualFramePosition=[0, 0, 0],
meshScale=scale,
)
p.createMultiBody(
baseMass=1,
baseVisualShapeIndex=visual_ind,
basePosition=position,
baseOrientation=orientation,
useMaximalCoordinates=True,
)
def _render_image(self, camera_pose):
width = self.camera_params["width"]
height = self.camera_params["height"]
fov = self.camera_params["fov"]
aspect = width / height
near = self.camera_params["near"]
far = self.camera_params["far"]
T = np.mat([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 1], [0, 0, 0, 1]])
look_at_T = camera_pose.dot(T)
view_matrix = p.computeViewMatrix(
[camera_pose[0, 3], camera_pose[1, 3], camera_pose[2, 3]],
[look_at_T[0, 3], look_at_T[1, 3], look_at_T[2, 3]],
[-camera_pose[0, 1], -camera_pose[1, 1], -camera_pose[2, 1]],
)
projection_matrix = p.computeProjectionMatrixFOV(fov, aspect, near, far)
images = p.getCameraImage(
width,
height,
view_matrix,
projection_matrix,
renderer=p.ER_BULLET_HARDWARE_OPENGL,
)
rgb = images[2]
depth = images[3]
seg = images[4]
rgb = np.reshape(rgb, (height, width, 4))
depth = np.reshape(depth, (height, width))
seg = np.reshape(seg, (height, width))
rgb_image = rgb[..., :3]
depth_image = far * near / (far - (far - near) * depth)
depth_image = np.asanyarray(depth_image).astype(np.float32) * 1000.0
depth_image = depth_image.astype(np.uint16)
id = 0
for object_name in self.scene.keys():
self.segmentation_labels[str(id + 1)] = object_name
id += 1
return {
"rgb": rgb_image,
"depth": depth_image,
"segmentation": seg,
"segmentation_labels": self.segmentation_labels,
"camera_params": self.camera_params,
}
def generate_images(self, camera_pose):
results = self._render_image(np.asarray(camera_pose))
p.stepSimulation()
return results
def run(self):
self.app.run(host="0.0.0.0", port=self.port)
ISAAC_SIM_CAM_H_APERTURE = 20.955
ISAAC_SIM_CAM_V_APERTURE = 15.2908
ISAAC_SIM_FOCAL_LENGTH = 39
ISAAC_SIM_CAM_D_APERTURE = math.sqrt(ISAAC_SIM_CAM_H_APERTURE**2 + ISAAC_SIM_CAM_V_APERTURE**2)
CAM_WIDTH = 640
CAM_HEIGHT = 480
CAM_FOV = 2 * math.atan(ISAAC_SIM_CAM_D_APERTURE / (2 * ISAAC_SIM_FOCAL_LENGTH)) / math.pi * 180
CAM_NEAR = 0.001
CAM_FAR = 10
CAM_CX = CAM_WIDTH / 2
CAM_CY = CAM_HEIGHT / 2
CAM_FX = 1 / math.tan(CAM_FOV * math.pi / 180.0 / 2.0) * CAM_WIDTH / 2
CAM_FY = 1 / (CAM_HEIGHT / CAM_WIDTH * math.tan(CAM_FOV * math.pi / 180.0 / 2.0)) * CAM_HEIGHT / 2
CAMERA_PARAMS = {
"width": CAM_WIDTH,
"height": CAM_HEIGHT,
"fov": CAM_FOV,
"near": CAM_NEAR,
"far": CAM_FAR,
"cx": CAM_CX,
"cy": CAM_CY,
"fx": CAM_FX,
"fy": CAM_FY,
}
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default="configs/server_view_generator.yaml")
args = parser.parse_args()
vg = ViewGenerator(args.config, CAMERA_PARAMS)
vg.run()