This commit is contained in:
2024-10-09 16:13:22 +00:00
commit 0ea3f048dc
437 changed files with 44406 additions and 0 deletions

View File

View File

@@ -0,0 +1,409 @@
import os
import re
import sys
import numpy as np
import torch
import open3d as o3d
from torch.utils.data import DataLoader
path = os.path.abspath(__file__)
for i in range(4):
path = os.path.dirname(path)
PROJECT_ROOT = path
sys.path.append(PROJECT_ROOT)
GSNET_PROJECT_ROOT = os.path.join(PROJECT_ROOT, "baselines/grasping/GSNet")
sys.path.append(os.path.join(GSNET_PROJECT_ROOT, "pointnet2"))
sys.path.append(os.path.join(GSNET_PROJECT_ROOT, "utils"))
sys.path.append(os.path.join(GSNET_PROJECT_ROOT, "models"))
sys.path.append(os.path.join(GSNET_PROJECT_ROOT, "dataset"))
from utils.omni_util import OmniUtil
from utils.view_util import ViewUtil
from runners.preprocessors.grasping.abstract_grasping_preprocessor import GraspingPreprocessor
from configs.config import ConfigManager
from baselines.grasping.GSNet.models.graspnet import GraspNet
from baselines.grasping.GSNet.graspnetAPI.graspnetAPI.graspnet_eval import GraspGroup
from baselines.grasping.GSNet.dataset.graspnet_dataset import minkowski_collate_fn
from torch.utils.data import Dataset
class GSNetInferenceDataset(Dataset):
CAMERA_PARAMS_TEMPLATE = "camera_params_{}.json"
DISTANCE_TEMPLATE = "distance_to_camera_{}.npy"
RGB_TEMPLATE = "rgb_{}.png"
MASK_TEMPLATE = "semantic_segmentation_{}.png"
MASK_LABELS_TEMPLATE = "semantic_segmentation_labels_{}.json"
def __init__(
self,
source="nbv1",
data_type="sample",
data_dir="/mnt/h/AI/Datasets",
scene_pts_num=15000,
voxel_size=0.005,
):
self.data_dir = data_dir
self.scene_pts_num = scene_pts_num
self.data_path = str(os.path.join(self.data_dir, source, data_type))
self.scene_list = os.listdir(self.data_path)
self.data_list = self.get_datalist()
self.voxel_size = voxel_size
def __len__(self):
return len(self.data_list)
def __getitem__(self, index):
frame_path, target = self.data_list[index]
frame_data = self.load_frame_data(frame_path=frame_path, object_name=target)
return frame_data
def get_datalist(self):
scene_frame_list = []
for scene in self.scene_list:
scene_path = os.path.join(self.data_path, scene)
file_list = os.listdir(scene_path)
for file in file_list:
if file.startswith("camera_params"):
frame_index = re.findall(r"\d+", file)[0]
frame_path = os.path.join(scene_path, frame_index)
target_list = OmniUtil.get_object_list(frame_path)
for target in target_list:
scene_frame_list.append((frame_path,target))
if len(target_list) == 0:
scene_frame_list.append((frame_path, None))
print("Scene: ", scene, " has ", len(scene_frame_list), " frames")
return scene_frame_list
def load_frame_data(self, frame_path, object_name):
try:
target_list = OmniUtil.get_object_list(path=frame_path, contains_non_obj=True)
_, obj_pcl_dict = OmniUtil.get_segmented_points(
path=frame_path, target_list=target_list
)
obj_center = ViewUtil.get_object_center_from_pts_dict(object_name, obj_pcl_dict)
croped_pts_dict = ViewUtil.crop_pts_dict(obj_pcl_dict, obj_center, radius=0.2)
sampled_scene_pts, sampled_pts_dict = GSNetInferenceDataset.sample_dict_to_target_points(croped_pts_dict)
ret_dict = {
"frame_path": frame_path,
"point_clouds": sampled_scene_pts.astype(np.float32),
"coors": sampled_scene_pts.astype(np.float32) / self.voxel_size,
"feats": np.ones_like(sampled_scene_pts).astype(np.float32),
"obj_pcl_dict": sampled_pts_dict,
"object_name": object_name,
}
except Exception as e:
print("Error in loading frame data: ", e)
ret_dict = {
"frame_path": frame_path,
"point_clouds": np.zeros((self.scene_pts_num, 3)).astype(np.float32),
"coors": np.zeros((self.scene_pts_num, 3)).astype(np.float32),
"feats": np.ones((self.scene_pts_num, 3)).astype(np.float32),
"obj_pcl_dict": {},
"object_name": object_name,
"error": True
}
return ret_dict
def sample_points(points, target_num_points):
num_points = points.shape[0]
if num_points == 0:
return np.zeros((target_num_points, points.shape[1]))
if num_points > target_num_points:
indices = np.random.choice(num_points, target_num_points, replace=False)
else:
indices = np.random.choice(num_points, target_num_points, replace=True)
return points[indices]
def sample_dict_to_target_points(croped_pts_dict, total_points=15000):
all_sampled_points = []
sampled_pts_dict = {}
total_existing_points = sum([pts.shape[0] for pts in croped_pts_dict.values() if pts.shape[0] > 0])
if total_existing_points > total_points:
ratios = {name: len(pts) / total_existing_points for name, pts in croped_pts_dict.items() if pts.shape[0] > 0}
target_num_points = {name: int(ratio * total_points) for name, ratio in ratios.items()}
remaining_points = total_points - sum(target_num_points.values())
for name in target_num_points.keys():
if remaining_points > 0:
target_num_points[name] += 1
remaining_points -= 1
else:
target_num_points = {name: len(pts) for name, pts in croped_pts_dict.items()}
remaining_points = total_points - total_existing_points
additional_points = np.random.choice([name for name, pts in croped_pts_dict.items() if pts.shape[0] > 0], remaining_points, replace=True)
for name in additional_points:
target_num_points[name] += 1
for name, pts in croped_pts_dict.items():
if pts.shape[0] == 0:
sampled_pts_dict[name] = pts
continue
sampled_pts = GSNetInferenceDataset.sample_points(pts, target_num_points[name])
sampled_pts_dict[name] = sampled_pts
all_sampled_points.append(sampled_pts)
if len(all_sampled_points) > 0:
sampled_scene_pts = np.concatenate(all_sampled_points, axis=0)
else:
sampled_scene_pts = np.zeros((total_points, 3))
return sampled_scene_pts, sampled_pts_dict
@staticmethod
def sample_pcl(pcl, n_pts=1024):
indices = np.random.choice(pcl.shape[0], n_pts, replace=pcl.shape[0] < n_pts)
return pcl[indices, :]
class GSNetPreprocessor(GraspingPreprocessor):
GRASP_MAX_WIDTH = 0.1
GRASPNESS_THRESHOLD = 0.1
NUM_VIEW = 300
NUM_ANGLE = 12
NUM_DEPTH = 4
M_POINT = 1024
def __init__(self, config_path):
super().__init__(config_path)
def get_dataloader(self, dataset_config):
def my_worker_init_fn(worker_id):
np.random.seed(np.random.get_state()[1][0] + worker_id)
dataset = GSNetInferenceDataset(
source=dataset_config["source"],
data_type=dataset_config["data_type"],
data_dir=dataset_config["data_dir"],
scene_pts_num=dataset_config["scene_pts_num"],
voxel_size=dataset_config["voxel_size"],
)
print("Test dataset length: ", len(dataset))
dataloader = DataLoader(
dataset,
batch_size=dataset_config["batch_size"],
shuffle=False,
num_workers=0,
worker_init_fn=my_worker_init_fn,
collate_fn=minkowski_collate_fn,
)
print("Test dataloader length: ", len(dataloader))
return dataloader
def get_model(self, model_config=None):
model = GraspNet(seed_feat_dim=model_config["general"]["seed_feat_dim"], is_training=False)
model.to("cuda")
checkpoint = torch.load(model_config["general"]["checkpoint_path"])
model.load_state_dict(checkpoint["model_state_dict"])
start_epoch = checkpoint["epoch"]
print(
"-> loaded checkpoint %s (epoch: %d)" % (model_config["general"]["checkpoint_path"], start_epoch)
)
model.eval()
return model
def prediction(self, model, dataloader, require_gripper=False, top_k=10):
preds = {}
for idx, batch_data in enumerate(dataloader):
try:
if "error" in batch_data:
frame_path = batch_data["frame_path"][0]
object_name = batch_data["object_name"][0]
preds[frame_path] = {object_name: None}
print("No graspable points found at frame: ", frame_path)
continue
print("Processing batch: ", idx, "/", len(dataloader))
for key in batch_data:
if "list" in key:
for i in range(len(batch_data[key])):
for j in range(len(batch_data[key][i])):
batch_data[key][i][j] = batch_data[key][i][j].to("cuda")
elif not isinstance(batch_data[key], (list)):
batch_data[key] = batch_data[key].to("cuda")
with torch.no_grad():
end_points = model(batch_data)
if end_points is None:
frame_path = batch_data["frame_path"][0]
object_name = batch_data["object_name"][0]
preds[frame_path] = {object_name: None}
print("No graspable points found at frame: ", frame_path)
continue
grasp_preds = self.decode_pred(end_points)
standard_grasp_preds = GSNetPreprocessor.standard_pred_decode(end_points)
standard_preds = standard_grasp_preds[0].detach().cpu().numpy()
if require_gripper:
gg = GraspGroup(standard_preds)
gg = gg.nms()
gg = gg.sort_by_score()
grippers = gg.to_open3d_geometry_list()
gp_pts_list = np.asarray([np.asarray(gripper_mesh.sample_points_uniformly(48).points) for gripper_mesh in grippers], dtype=np.float16)
gp_score_list = gg.scores
for idx in range(len(batch_data["frame_path"])):
frame_path = batch_data["frame_path"][idx]
object_name = batch_data["object_name"][idx]
if frame_path not in preds:
preds[frame_path] = {object_name: {}}
preds[frame_path][object_name] = grasp_preds[idx]
preds[frame_path][object_name]["obj_pcl_dict"] = (
batch_data["obj_pcl_dict"][idx]
)
if require_gripper:
preds[frame_path][object_name]["gripper"] = {
"gripper_pose": gp_pts_list.tolist(),
"gripper_score": gp_score_list.tolist()
}
except Exception as e:
print("Error in inference: ", e)
# ----- Debug Trace ----- #
print(batch_data["frame_path"])
import ipdb; ipdb.set_trace()
frame_path = batch_data["frame_path"][idx]
object_name = batch_data["object_name"][idx]
preds[frame_path] = {object_name: {}}
# ------------------------ #
results = {}
for frame_path in preds:
try:
predict_results = {}
for object_name in preds[frame_path]:
if object_name is None or preds[frame_path][object_name] == None:
continue
grasp_center = preds[frame_path][object_name]["grasp_center"]
grasp_score = preds[frame_path][object_name]["grasp_score"]
obj_pcl_dict = preds[frame_path][object_name]["obj_pcl_dict"]
if require_gripper:
gripper = preds[frame_path][object_name]["gripper"]
grasp_center = grasp_center.unsqueeze(1)
obj_pcl = obj_pcl_dict[object_name]
obj_pcl = torch.tensor(
obj_pcl.astype(np.float32), device=grasp_center.device
)
obj_pcl = obj_pcl.unsqueeze(0)
grasp_obj_table = (grasp_center == obj_pcl).all(axis=-1)
obj_pts_on_grasp = grasp_obj_table.any(axis=1)
obj_graspable_pts = grasp_center[obj_pts_on_grasp].squeeze(1)
obj_graspable_pts_score = grasp_score[obj_pts_on_grasp]
obj_graspable_pts_info = torch.cat(
[obj_graspable_pts, obj_graspable_pts_score], dim=1
)
if obj_graspable_pts.shape[0] == 0:
obj_graspable_pts_info = torch.zeros((top_k, 4))
ranked_obj_graspable_pts_info = self.sample_graspable_pts(
obj_graspable_pts_info, top_k=top_k
)
predict_results[object_name] = {
"positions": ranked_obj_graspable_pts_info[:, :3]
.cpu()
.numpy()
.tolist(),
"scores": ranked_obj_graspable_pts_info[:, 3]
.cpu()
.numpy()
.tolist(),
}
if require_gripper:
results[frame_path] = {"predicted_results": predict_results, "gripper": gripper}
else:
results[frame_path] = {"predicted_results": predict_results}
except Exception as e:
print("Error in postprocessing: ", e)
# ----- Debug Trace ----- #
print(frame_path)
import ipdb; ipdb.set_trace()
# ------------------------ #
print("Prediction finished")
return results
@staticmethod
def sample_graspable_pts(graspable_pts, top_k=50):
if graspable_pts.shape[0] < top_k:
sampled_indices = torch.randint(0, graspable_pts.shape[0], (top_k,))
graspable_pts = graspable_pts[sampled_indices]
sorted_indices = torch.argsort(graspable_pts[:, 3], descending=True)
sampled_indices = graspable_pts[sorted_indices][:top_k]
return sampled_indices
def decode_pred(self, end_points):
batch_size = len(end_points["point_clouds"])
grasp_preds = []
for i in range(batch_size):
grasp_center = end_points["xyz_graspable"][i].float()
num_pts = end_points["xyz_graspable"][i].shape[0]
grasp_score = end_points["grasp_score_pred"][i].float()
grasp_score = grasp_score.view(num_pts, -1)
grasp_score, _ = torch.max(grasp_score, -1) # [M_POINT]
grasp_score = grasp_score.view(-1, 1)
grasp_preds.append(
{"grasp_center": grasp_center, "grasp_score": grasp_score}
)
return grasp_preds
@staticmethod
def standard_pred_decode(end_points):
batch_size = len(end_points['point_clouds'])
grasp_preds = []
for i in range(batch_size):
grasp_center = end_points['xyz_graspable'][i].float()
num_pts = end_points["xyz_graspable"][i].shape[0]
grasp_score = end_points['grasp_score_pred'][i].float()
grasp_score = grasp_score.view(num_pts, -1)
grasp_score, grasp_score_inds = torch.max(grasp_score, -1) # [M_POINT]
grasp_score = grasp_score.view(-1, 1)
grasp_angle = (grasp_score_inds // GSNetPreprocessor.NUM_DEPTH) * np.pi / 12
grasp_depth = (grasp_score_inds % GSNetPreprocessor.NUM_DEPTH + 1) * 0.01
grasp_depth = grasp_depth.view(-1, 1)
grasp_width = 1.2 * end_points['grasp_width_pred'][i] / 10.
grasp_width = grasp_width.view(GSNetPreprocessor.M_POINT, GSNetPreprocessor.NUM_ANGLE*GSNetPreprocessor.NUM_DEPTH)
grasp_width = torch.gather(grasp_width, 1, grasp_score_inds.view(-1, 1))
grasp_width = torch.clamp(grasp_width, min=0., max=GSNetPreprocessor.GRASP_MAX_WIDTH)
approaching = -end_points['grasp_top_view_xyz'][i].float()
grasp_rot = GSNetPreprocessor.batch_viewpoint_params_to_matrix(approaching, grasp_angle)
grasp_rot = grasp_rot.view(GSNetPreprocessor.M_POINT, 9)
# merge preds
grasp_height = 0.02 * torch.ones_like(grasp_score)
obj_ids = -1 * torch.ones_like(grasp_score)
grasp_preds.append(
torch.cat([grasp_score, grasp_width, grasp_height, grasp_depth, grasp_rot, grasp_center, obj_ids], axis=-1))
return grasp_preds
@staticmethod
def batch_viewpoint_params_to_matrix(batch_towards, batch_angle):
axis_x = batch_towards
ones = torch.ones(axis_x.shape[0], dtype=axis_x.dtype, device=axis_x.device)
zeros = torch.zeros(axis_x.shape[0], dtype=axis_x.dtype, device=axis_x.device)
axis_y = torch.stack([-axis_x[:, 1], axis_x[:, 0], zeros], dim=-1)
mask_y = (torch.norm(axis_y, dim=-1) == 0)
axis_y[mask_y, 1] = 1
axis_x = axis_x / torch.norm(axis_x, dim=-1, keepdim=True)
axis_y = axis_y / torch.norm(axis_y, dim=-1, keepdim=True)
axis_z = torch.cross(axis_x, axis_y)
sin = torch.sin(batch_angle)
cos = torch.cos(batch_angle)
R1 = torch.stack([ones, zeros, zeros, zeros, cos, -sin, zeros, sin, cos], dim=-1)
R1 = R1.reshape([-1, 3, 3])
R2 = torch.stack([axis_x, axis_y, axis_z], dim=-1)
batch_matrix = torch.matmul(R2, R1)
return batch_matrix
if __name__ == "__main__":
gs_preproc = GSNetPreprocessor(config_path="configs/server_gsnet_preprocess_config.yaml")
gs_preproc.run()

View File

View File

@@ -0,0 +1,65 @@
import os
import json
import numpy as np
from abc import abstractmethod, ABC
from runners.preprocessor import Preprocessor
from utils.omni_util import OmniUtil
class GraspingPreprocessor(Preprocessor, ABC):
def __init__(self, config_path):
super().__init__(config_path)
self.load_experiment("GSNet")
self.dataset_list_config = self.preprocess_config["dataset_list"]
self.model_config = self.preprocess_config["model"]
def run(self):
"""
- for each dataset
--- get its dataloader
--- for each batch, do prediction
--- preprocess the collected results
--- save processed results
"""
for dataset_config in self.dataset_list_config:
dataloader = self.get_dataloader(dataset_config)
model = self.get_model(self.model_config)
predicted_data = self.prediction(model, dataloader)
processed_data = self.preprocess(predicted_data)
self.save_processed_data(processed_data,dataset_config)
def preprocess(self, predicted_data, require_gripper=False):
for frame_path in predicted_data:
frame_obj_info = predicted_data[frame_path]["predicted_results"]
if require_gripper:
gripper = predicted_data[frame_path]["gripper"]
predicted_data[frame_path]["gripper"] = gripper
predicted_data[frame_path]["sum_score"] = {}
predicted_data[frame_path]["avg_score"] = {}
for obj_name in frame_obj_info:
obj_score_sum = np.sum(frame_obj_info[obj_name]["scores"])
obj_score_avg = np.mean(frame_obj_info[obj_name]["scores"])
predicted_data[frame_path]["sum_score"][obj_name] = obj_score_sum
predicted_data[frame_path]["avg_score"][obj_name] = obj_score_avg
return predicted_data
def save_processed_data(self, processed_data, data_config=None):
data_path = os.path.join(str(self.experiment_path), Preprocessor.DATA, data_config["source"], data_config["data_type"])
for frame_path in processed_data:
data_item = processed_data[frame_path]
scene = os.path.basename(os.path.dirname(frame_path))
idx = os.path.basename(frame_path)
target_scene_path = os.path.join(str(data_path), scene)
if not os.path.exists(target_scene_path):
os.makedirs(target_scene_path)
label_save_path = os.path.join(
target_scene_path,OmniUtil.SCORE_LABEL_TEMPLATE.format(idx)
)
with open(label_save_path, "w+") as f:
json.dump(data_item, f)
print("Processed data saved to: ", data_path)

View File

@@ -0,0 +1,185 @@
import os
import re
import sys
import numpy as np
import torch
import trimesh
from torch.utils.data import DataLoader
path = os.path.abspath(__file__)
for i in range(4):
path = os.path.dirname(path)
PROJECT_ROOT = path
sys.path.append(PROJECT_ROOT)
from utils.omni_util import OmniUtil
from utils.view_util import ViewUtil
from runners.preprocessors.object_pose.abstract_object_pose_preprocessor import ObjectPosePreprocessor
from configs.config import ConfigManager
from torch.utils.data import Dataset
class ObjectPoseInferenceDataset(Dataset):
CAMERA_PARAMS_TEMPLATE = "camera_params_{}.json"
DISTANCE_TEMPLATE = "distance_to_camera_{}.npy"
RGB_TEMPLATE = "rgb_{}.png"
MASK_TEMPLATE = "semantic_segmentation_{}.png"
MASK_LABELS_TEMPLATE = "semantic_segmentation_labels_{}.json"
def __init__(
self,
source="nbv1",
data_type="sample",
data_dir="/mnt/h/AI/Datasets",
):
self.data_dir = data_dir
self.empty_frame = set()
self.data_path = str(os.path.join(self.data_dir, source, data_type))
self.scene_list = os.listdir(self.data_path)
self.data_list = self.get_datalist()
self.object_data_list = self.get_object_datalist()
self.object_name_list = list(self.object_data_list.keys())
self.mesh_dir_path = os.path.join(self.data_dir, source, "objects")
self.meshes = {}
self.load_all_meshes()
def __len__(self):
return len(self.data_list)
def __getitem__(self, index):
frame_path, target = self.data_list[index]
frame_data = self.load_frame_data(frame_path=frame_path, object_name=target)
return frame_data
def load_all_meshes(self):
object_name_list = os.listdir(self.mesh_dir_path)
for object_name in object_name_list:
mesh_path = os.path.join(self.mesh_dir_path, object_name, "Scan", "Simp.obj")
mesh = trimesh.load(mesh_path)
object_model_scale = [0.001, 0.001, 0.001]
mesh.apply_scale(object_model_scale)
self.meshes[object_name] = mesh
def get_datalist(self):
for scene in self.scene_list:
scene_path = os.path.join(self.data_path, scene)
file_list = os.listdir(scene_path)
scene_frame_list = []
for file in file_list:
if file.startswith("camera_params"):
frame_index = re.findall(r"\d+", file)[0]
frame_path = os.path.join(scene_path, frame_index)
target_list = OmniUtil.get_object_list(frame_path)
for target in target_list:
scene_frame_list.append((frame_path,target))
if len(target_list) == 0:
self.empty_frame.add(frame_path)
return scene_frame_list
def get_object_datalist(self):
object_datalist = {}
for data_item in self.data_list:
frame_path, target = data_item
if target not in object_datalist:
object_datalist[target] = []
object_datalist[target].append(frame_path)
return object_datalist
def get_object_data_batch(self, object_name):
object_data_list = self.object_data_list[object_name]
batch_data = {"frame_path_list":[],
"rgb_batch":[],
"depth_batch":[],
"seg_batch":[],
"gt_pose_batch":[],
"K":None,
"mesh":None}
for frame_path in object_data_list:
frame_data = self.load_frame_data(frame_path, object_name)
batch_data["frame_path_list"].append(frame_path)
batch_data["rgb_batch"].append(frame_data["rgb"])
batch_data["depth_batch"].append(frame_data["depth"])
batch_data["seg_batch"].append(frame_data["seg"])
batch_data["gt_pose_batch"].append(frame_data["gt_pose"])
batch_data["K"] = frame_data["K"]
batch_data["mesh"] = frame_data["mesh"]
batch_data["rgb_batch"] = np.asarray(batch_data["rgb_batch"],dtype=np.uint8)
batch_data["depth_batch"] = np.asarray(batch_data["depth_batch"])
batch_data["seg_batch"] = np.asarray(batch_data["seg_batch"])
batch_data["gt_pose_batch"] = np.asarray(batch_data["gt_pose_batch"])
return batch_data
def load_frame_data(self, frame_path, object_name):
rgb = OmniUtil.get_rgb(frame_path)
depth = OmniUtil.get_depth(frame_path)
seg = OmniUtil.get_single_seg(frame_path, object_name)
K = OmniUtil.get_intrinsic_matrix(frame_path)
gt_obj_pose = OmniUtil.get_o2c_pose(frame_path, object_name)
ret_dict = {
"frame_path": frame_path,
"rgb": rgb.astype(np.float32),
"depth": depth.astype(np.float32),
"seg": seg,
"K": K.astype(np.float32),
"object_name": object_name,
"mesh": self.meshes[object_name],
"gt_pose": gt_obj_pose.astype(np.float32)
}
return ret_dict
class FoundationPosePreprocessor(ObjectPosePreprocessor):
def __init__(self, config_path):
super().__init__(config_path)
def run(self):
for dataset_config in self.dataset_list_config:
dataset = ObjectPoseInferenceDataset(
source=dataset_config["source"],
data_type=dataset_config["data_type"],
data_dir=dataset_config["data_dir"],
)
result = self.prediction(dataset)
self.save_processed_data(result, dataset_config)
def prediction(self, dataset):
final_result = {}
cnt = 0
for object_name in dataset.object_name_list:
cnt += 1
print(f"Processing object: {object_name} ({cnt}/{len(dataset.object_name_list)})")
object_data_batch = dataset.get_object_data_batch(object_name)
print(f"batch size of object {object_name}: {len(object_data_batch['frame_path_list'])}")
pose_batch, result_batch = ViewUtil.get_object_pose_batch(
object_data_batch["K"],
object_data_batch["mesh"],
object_data_batch["rgb_batch"],
object_data_batch["depth_batch"],
object_data_batch["seg_batch"],
object_data_batch["gt_pose_batch"],
self.web_server_config["port"]
)
for frame_path, pred_pose,gt_pose,result in zip(object_data_batch["frame_path_list"], pose_batch,object_data_batch["gt_pose_batch"],result_batch):
if frame_path not in final_result:
final_result[frame_path]={}
final_result[frame_path][object_name] = {"gt_pose":gt_pose.tolist(),"pred_pose":pred_pose.tolist(),"eval_result":result}
for frame_path in dataset.empty_frame:
final_result[frame_path] = {}
return final_result
if __name__ == "__main__":
config_path = os.path.join(PROJECT_ROOT, "configs/server_object_preprocess_config.yaml")
preprocessor = FoundationPosePreprocessor(config_path)
preprocessor.run()

View File

@@ -0,0 +1,51 @@
import os
import json
import numpy as np
from abc import abstractmethod, ABC
from runners.preprocessor import Preprocessor
from utils.omni_util import OmniUtil
class ObjectPosePreprocessor(Preprocessor, ABC):
def __init__(self, config_path):
super().__init__(config_path)
self.load_experiment("GSNet")
self.dataset_list_config = self.preprocess_config["dataset_list"]
self.web_server_config = self.preprocess_config["web_server"]
def run(self):
pass
def get_model(self, model_config):
pass
def get_dataloader(self, dataset_config):
pass
def preprocess(self, predicted_data):
pass
def prediction(self, model, dataloader):
pass
def save_processed_data(self, processed_data, data_config=None):
data_path = os.path.join(str(self.experiment_path), Preprocessor.DATA, data_config["source"], data_config["data_type"])
# ----- Debug Trace ----- #
import ipdb; ipdb.set_trace()
# ------------------------ #
for frame_path in processed_data:
data_item = processed_data[frame_path]
scene = os.path.basename(os.path.dirname(frame_path))
idx = os.path.basename(frame_path)
target_scene_path = os.path.join(str(data_path), scene)
if not os.path.exists(target_scene_path):
os.makedirs(target_scene_path)
label_save_path = os.path.join(
target_scene_path,OmniUtil.SCORE_LABEL_TEMPLATE.format(idx)
)
with open(label_save_path, "w+") as f:
json.dump(data_item, f)
print("Processed data saved to: ", data_path)

View File

@@ -0,0 +1,47 @@
import os
import json
import numpy as np
from abc import abstractmethod, ABC
from runners.preprocessor import Preprocessor
from utils.omni_util import OmniUtil
class RGBFeatPreprocessor(Preprocessor, ABC):
def __init__(self, config_path):
super().__init__(config_path)
self.load_experiment("RGBFeat")
self.dataset_list_config = self.preprocess_config["dataset_list"]
self.model_config = self.preprocess_config["model"]
def run(self):
"""
- for each dataset
--- get its dataloader
--- for each batch, do prediction
--- preprocess the collected results
--- save processed results
"""
for dataset_config in self.dataset_list_config:
dataloader = self.get_dataloader(dataset_config)
model = self.get_model(self.model_config)
predicted_data = self.prediction(model, dataloader)
self.save_processed_data(predicted_data,dataset_config)
def preprocess(self, predicted_data):
pass
def save_processed_data(self, processed_data, data_config=None):
data_path = os.path.join(str(self.experiment_path), Preprocessor.DATA, data_config["source"], data_config["data_type"])
for frame_path in processed_data:
rgb_feat = processed_data[frame_path]
scene = os.path.basename(os.path.dirname(frame_path))
idx = os.path.basename(frame_path)
target_scene_path = os.path.join(str(data_path), scene)
if not os.path.exists(target_scene_path):
os.makedirs(target_scene_path)
rgb_feat_save_path = os.path.join(
target_scene_path,OmniUtil.RGB_FEAT_TEMPLATE.format(idx))
np.save(rgb_feat_save_path, rgb_feat)
print("Processed data saved to: ", data_path)

View File

@@ -0,0 +1,128 @@
import os
import sys
path = os.path.abspath(__file__)
for i in range(4):
path = os.path.dirname(path)
PROJECT_ROOT = path
sys.path.append(PROJECT_ROOT)
import re
import numpy as np
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from utils.omni_util import OmniUtil
from runners.preprocessors.rgb_feat.abstract_rgb_feat_preprocessor import RGBFeatPreprocessor
from modules.rgb_encoder.dinov2_encoder import Dinov2Encoder
from PIL import Image
from torch.utils.data import Dataset
class Dinov2InferenceDataset(Dataset):
RGB_TEMPLATE = "rgb_{}.png"
def __init__(
self,
source="nbv1",
data_type="sample",
data_dir="/mnt/h/AI/Datasets",
image_size = 480
):
self.data_dir = data_dir
self.data_path = str(os.path.join(self.data_dir, source, data_type))
self.scene_list = os.listdir(self.data_path)
self.data_list = self.get_datalist()
self.transform = transforms.Compose([
transforms.Resize(image_size),
transforms.CenterCrop(int(image_size//14)*14),
transforms.ToTensor(),
transforms.Normalize(mean=0.5, std=0.2)
])
def __len__(self):
return len(self.data_list)
def __getitem__(self, index):
frame_path = self.data_list[index]
frame_data = self.load_frame_data(frame_path=frame_path)
return frame_data
def get_datalist(self):
for scene in self.scene_list:
scene_path = os.path.join(self.data_path, scene)
file_list = os.listdir(scene_path)
scene_frame_list = []
for file in file_list:
if file.startswith("camera_params"):
frame_index = re.findall(r"\d+", file)[0]
frame_path = os.path.join(scene_path, frame_index)
scene_frame_list.append(frame_path)
return scene_frame_list
def load_frame_data(self, frame_path):
rgb = OmniUtil.get_rgb(frame_path)
rgb = Image.fromarray(rgb)
rgb = self.transform(rgb)
ret_dict = {"rgb": rgb, "frame_path": frame_path}
return ret_dict
class Dinov2Preprocessor(RGBFeatPreprocessor):
MODULE_NAME: str = "dinov2"
def __init__(self, config_path):
super().__init__(config_path)
def get_dataloader(self, dataset_config):
dataset = Dinov2InferenceDataset(
source=dataset_config["source"],
data_type=dataset_config["data_type"],
data_dir=dataset_config["data_dir"],
image_size = dataset_config["image_size"]
)
print("Test dataset length: ", len(dataset))
dataloader = DataLoader(
dataset,
batch_size=dataset_config["batch_size"],
shuffle=False,
num_workers=0,
)
print("Test dataloader length: ", len(dataloader))
return dataloader
def get_model(self, model_config=None):
model = Dinov2Encoder(model_config["general"]["model_name"])
model.to("cuda")
return model
def prediction(self, model, dataloader):
results = {}
total = len(dataloader)
for idx, batch_data in enumerate(dataloader):
rgb = batch_data["rgb"].to("cuda")
with torch.no_grad():
rgb_feat = model.encode_rgb(rgb)
frame_paths = batch_data["frame_path"]
for i, frame_path in enumerate(frame_paths):
results[frame_path] = rgb_feat[i].cpu().numpy()
print(f"Processed {idx}/{total} batches")
return results
def visualize_feature(self, rgb_feat, model_name, save_path=None):
model = Dinov2Encoder(model_name)
model.visualize_features(rgb_feat,save_path)
if __name__ == "__main__":
rgb_preproc = Dinov2Preprocessor(config_path="configs/server_rgb_feat_preprocess_config.yaml")
#ßrgb_preproc.run()
rgb_feat = np.load("experiments/rgb_feat_preprocessor_test/data/nbv1/sample/scene_0/rgb_feat_0405.npy")
rgb_preproc.visualize_feature(rgb_feat, "dinov2_vits14", './visualize.png')