nbv_rec_control/runners/cad_strategy.py

193 lines
8.3 KiB
Python
Raw Normal View History

2024-10-07 16:20:56 +08:00
import os
import trimesh
2024-10-08 21:28:30 +08:00
import tempfile
import subprocess
2024-10-07 16:20:56 +08:00
import numpy as np
from PytorchBoot.runners.runner import Runner
from PytorchBoot.config import ConfigManager
import PytorchBoot.stereotype as stereotype
from PytorchBoot.utils.log_util import Log
from PytorchBoot.status import status_manager
2024-10-08 21:28:30 +08:00
from utils.control_util import ControlUtil
2024-10-07 16:20:56 +08:00
from utils.communicate_util import CommunicateUtil
from utils.pts_util import PtsUtil
from utils.reconstruction_util import ReconstructionUtil
2024-10-08 21:28:30 +08:00
from utils.preprocess_util import save_scene_data
from utils.data_load import DataLoadUtil
2024-10-07 16:20:56 +08:00
@stereotype.runner("CAD_strategy_runner")
class CADStrategyRunner(Runner):
def __init__(self, config_path: str):
super().__init__(config_path)
self.load_experiment("cad_strategy")
self.status_info = {
"status_manager": status_manager,
"app_name": "cad",
"runner_name": "cad_strategy"
}
self.generate_config = ConfigManager.get("runner", "generate")
self.reconstruct_config = ConfigManager.get("runner", "reconstruct")
self.model_dir = self.generate_config["model_dir"]
self.voxel_size = self.generate_config["voxel_size"]
self.max_view = self.generate_config["max_view"]
self.min_view = self.generate_config["min_view"]
self.max_diag = self.generate_config["max_diag"]
self.min_diag = self.generate_config["min_diag"]
self.min_cam_table_included_degree = self.generate_config["min_cam_table_included_degree"]
self.random_view_ratio = self.generate_config["random_view_ratio"]
self.soft_overlap_threshold = self.reconstruct_config["soft_overlap_threshold"]
self.hard_overlap_threshold = self.reconstruct_config["hard_overlap_threshold"]
self.scan_points_threshold = self.reconstruct_config["scan_points_threshold"]
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
2024-10-08 21:28:30 +08:00
def get_pts_from_view_data(self, view_data):
depth = view_data["depth_image"]
depth_intrinsics = view_data["depth_intrinsics"]
depth_extrinsics = view_data["depth_extrinsics"]
cam_pts = PtsUtil.get_pts_from_depth(depth, depth_intrinsics, depth_extrinsics)
return cam_pts
def split_scan_pts_and_obj_pts(self, world_pts, scan_pts_z, z_threshold = 0.003):
scan_pts = world_pts[scan_pts_z < z_threshold]
obj_pts = world_pts[scan_pts_z >= z_threshold]
return scan_pts, obj_pts
2024-10-07 16:20:56 +08:00
def run_one_model(self, model_name):
''' init robot '''
2024-10-08 21:28:30 +08:00
#ControlUtil.init()
2024-10-07 16:20:56 +08:00
''' load CAD model '''
2024-10-08 21:28:30 +08:00
model_path = os.path.join(self.model_dir, model_name,"mesh.obj")
2024-10-07 16:20:56 +08:00
cad_model = trimesh.load(model_path)
''' take first view '''
2024-10-08 21:28:30 +08:00
#view_data = CommunicateUtil.get_view_data(init=True)
#first_cam_pts = self.get_pts_from_view_data(view_data)
2024-10-07 16:20:56 +08:00
''' register '''
2024-10-08 21:28:30 +08:00
#cad_to_cam = PtsUtil.register(first_cam_pts, cad_model)
#cam_to_world = ControlUtil.get_pose()
cad_to_world = np.eye(4) #cam_to_world @ cad_to_cam
2024-10-07 16:20:56 +08:00
2024-10-08 21:28:30 +08:00
world_to_blender_world = np.eye(4)
world_to_blender_world[:3, 3] = np.asarray([0, 0, 0.9215])
cad_to_blender_world = np.dot(world_to_blender_world, cad_to_world)
cad_model:trimesh.Trimesh = cad_model.apply_transform(cad_to_blender_world)
2024-10-07 16:20:56 +08:00
2024-10-08 21:28:30 +08:00
with tempfile.TemporaryDirectory() as temp_dir:
name = "cad_model_world"
2024-10-07 16:20:56 +08:00
2024-10-08 21:28:30 +08:00
cad_model.export(os.path.join(temp_dir, f"{name}.obj"))
temp_dir = "/home/user/nbv_rec/nbv_rec_control/test_output"
scene_dir = os.path.join(temp_dir, name)
script_path = "/home/user/nbv_rec/blender_app/data_generator.py"
''' sample view '''
# import ipdb; ipdb.set_trace()
# print("start running renderer")
# result = subprocess.run([
# 'blender', '-b', '-P', script_path, '--', temp_dir
# ], capture_output=True, text=True)
# print("finish running renderer")
#
world_model_points = np.loadtxt(os.path.join(scene_dir, "points_and_normals.txt"))[:,:3]
''' preprocess '''
# save_scene_data(temp_dir, name)
pts_dir = os.path.join(temp_dir,name,"pts")
sample_view_pts_list = []
scan_points_idx_list = []
frame_num = len(os.listdir(pts_dir))
for frame_idx in range(frame_num):
pts_path = os.path.join(temp_dir,name, "pts", f"{frame_idx}.txt")
idx_path = os.path.join(temp_dir,name, "scan_points_indices", f"{frame_idx}.txt")
point_cloud = np.loadtxt(pts_path)
sampled_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud, self.voxel_size)
indices = np.loadtxt(idx_path, dtype=np.int32)
try:
len(indices)
except:
indices = np.array([indices])
sample_view_pts_list.append(sampled_point_cloud)
scan_points_idx_list.append(indices)
''' generate strategy '''
limited_useful_view, _, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(
world_model_points, sample_view_pts_list,
scan_points_indices_list = scan_points_idx_list,
init_view=0,
threshold=self.voxel_size,
soft_overlap_threshold = self.soft_overlap_threshold,
hard_overlap_threshold = self.hard_overlap_threshold,
scan_points_threshold = self.scan_points_threshold,
status_info=self.status_info
)
''' extract cam_to_world sequence '''
cam_to_world_seq = []
coveraget_rate_seq = []
from ipdb import set_trace; set_trace()
for idx, coverage_rate in limited_useful_view:
path = DataLoadUtil.get_path(temp_dir, name, idx)
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
cam_to_world_seq.append(cam_info["cam_to_world"])
coveraget_rate_seq.append(coverage_rate)
# ''' take best seq view '''
# for cam_to_world in cam_to_world_seq:
# ControlUtil.move_to(cam_to_world)
# ''' get world pts '''
# view_data = CommunicateUtil.get_view_data()
# cam_pts = self.get_pts_from_view_data(view_data)
# scan_points_idx = None
# world_pts = PtsUtil.transform_point_cloud(cam_pts, cam_to_world)
# sample_view_pts_list.append(world_pts)
# scan_points_idx_list.append(scan_points_idx)
2024-10-07 16:20:56 +08:00
def run(self):
total = len(os.listdir(self.model_dir))
model_start_idx = self.generate_config["model_start_idx"]
count_object = model_start_idx
for model_name in os.listdir(self.model_dir[model_start_idx:]):
Log.info(f"[{count_object}/{total}]Processing {model_name}")
self.run_one_model(model_name)
Log.success(f"[{count_object}/{total}]Finished processing {model_name}")
2024-10-07 22:03:50 -05:00
2024-10-07 16:20:56 +08:00
2024-10-07 22:03:50 -05:00
# ---------------------------- test ---------------------------- #
2024-10-07 16:20:56 +08:00
if __name__ == "__main__":
2024-10-07 22:03:50 -05:00
2024-10-08 00:24:22 +08:00
model_path = r"C:\Users\hofee\Downloads\mesh.obj"
2024-10-07 16:20:56 +08:00
model = trimesh.load(model_path)
2024-10-08 00:24:22 +08:00
2024-10-07 22:03:50 -05:00
''' test register '''
# test_pts_L = np.load(r"C:\Users\hofee\Downloads\0.npy")
# import open3d as o3d
# def add_noise(points, translation, rotation):
# R = o3d.geometry.get_rotation_matrix_from_axis_angle(rotation)
# noisy_points = points @ R.T + translation
# return noisy_points
# translation_noise = np.random.uniform(-0.5, 0.5, size=3)
# rotation_noise = np.random.uniform(-np.pi/4, np.pi/4, size=3)
# noisy_pts_L = add_noise(test_pts_L, translation_noise, rotation_noise)
2024-10-08 00:24:22 +08:00
2024-10-07 22:03:50 -05:00
# cad_to_cam_L = PtsUtil.register(noisy_pts_L, model)
2024-10-08 00:24:22 +08:00
2024-10-07 22:03:50 -05:00
# cad_pts_L = PtsUtil.transform_point_cloud(noisy_pts_L, cad_to_cam_L)
# np.savetxt(r"test.txt", cad_pts_L)
# np.savetxt(r"src.txt", noisy_pts_L)
2024-10-08 21:28:30 +08:00
2024-10-07 22:03:50 -05:00