update
This commit is contained in:
parent
cd85fed3a0
commit
3fe74eb6eb
33
move_cam_to.py
Normal file
33
move_cam_to.py
Normal file
@ -0,0 +1,33 @@
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.control_util import ControlUtil
|
||||
from utils.view_util import ViewUtil
|
||||
from utils.pts_util import PtsUtil
|
||||
from utils.communicate_util import CommunicateUtil
|
||||
import numpy as np
|
||||
import os
|
||||
if __name__ == "__main__":
|
||||
idx = "2"
|
||||
ControlUtil.connect_robot()
|
||||
ControlUtil.franka_reset()
|
||||
root_path = "/home/yan20/nbv_rec/project/franka_control/temp_output/cad_model_world"
|
||||
frame_path = os.path.join(root_path, idx)
|
||||
cam_info = DataLoadUtil.load_cam_info(frame_path, binocular=True)
|
||||
render_camL_to_world = cam_info["cam_to_world"]
|
||||
render_camO_to_world = cam_info["cam_to_world_O"]
|
||||
L_to_O = np.dot(np.linalg.inv(render_camO_to_world), render_camL_to_world)
|
||||
|
||||
ControlUtil.set_pose(render_camO_to_world)
|
||||
|
||||
real_camO_to_world = ControlUtil.get_pose()
|
||||
real_camL_to_world = np.dot(real_camO_to_world,L_to_O)
|
||||
view_data = CommunicateUtil.get_view_data(init=True)
|
||||
cam_pts = ViewUtil.get_pts(view_data)
|
||||
np.savetxt(f"cam_pts_{idx}.txt", cam_pts)
|
||||
world_pts = PtsUtil.transform_point_cloud(cam_pts, render_camL_to_world)
|
||||
print(real_camL_to_world)
|
||||
np.savetxt(f"world_pts_{idx}.txt", world_pts)
|
||||
# import ipdb;ipdb.set_trace()
|
||||
|
||||
# view_data = CommunicateUtil.get_view_data()
|
||||
# cam_pts = ViewUtil.get_pts(view_data)
|
||||
# np.savetxt(f"cam_pts_{idx}.txt", cam_pts)
|
109
register.py
Normal file
109
register.py
Normal file
@ -0,0 +1,109 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import trimesh
|
||||
from utils.pts_util import PtsUtil
|
||||
import numpy as np
|
||||
import open3d as o3d
|
||||
import torch
|
||||
import trimesh
|
||||
from scipy.spatial import cKDTree
|
||||
|
||||
def register(pcl: np.ndarray, model: trimesh.Trimesh, voxel_size=0.002):
|
||||
radius_normal = voxel_size * 2
|
||||
pipreg = o3d.pipelines.registration
|
||||
model_pcd = o3d.geometry.PointCloud()
|
||||
model_pcd.points = o3d.utility.Vector3dVector(model.vertices)
|
||||
model_downsampled = model_pcd.voxel_down_sample(voxel_size)
|
||||
model_downsampled.estimate_normals(
|
||||
search_param=o3d.geometry.KDTreeSearchParamHybrid(
|
||||
radius=radius_normal, max_nn=30
|
||||
)
|
||||
)
|
||||
# model_fpfh = pipreg.compute_fpfh_feature(
|
||||
# model_downsampled,
|
||||
# o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=100),
|
||||
# )
|
||||
|
||||
source_pcd = o3d.geometry.PointCloud()
|
||||
source_pcd.points = o3d.utility.Vector3dVector(pcl)
|
||||
source_downsampled = source_pcd.voxel_down_sample(voxel_size)
|
||||
source_downsampled.estimate_normals(
|
||||
search_param=o3d.geometry.KDTreeSearchParamHybrid(
|
||||
radius=radius_normal, max_nn=30
|
||||
)
|
||||
)
|
||||
# source_fpfh = pipreg.compute_fpfh_feature(
|
||||
# source_downsampled,
|
||||
# o3d.geometry.KDTreeSearchParamHybrid(radius=radius_normal, max_nn=100),
|
||||
# )
|
||||
|
||||
# reg_ransac = pipreg.registration_ransac_based_on_feature_matching(
|
||||
# source_downsampled,
|
||||
# model_downsampled,
|
||||
# source_fpfh,
|
||||
# model_fpfh,
|
||||
# mutual_filter=True,
|
||||
# max_correspondence_distance=voxel_size * 2,
|
||||
# estimation_method=pipreg.TransformationEstimationPointToPoint(False),
|
||||
# ransac_n=4,
|
||||
# checkers=[pipreg.CorrespondenceCheckerBasedOnEdgeLength(0.9)],
|
||||
# criteria=pipreg.RANSACConvergenceCriteria(4000000, 500),
|
||||
# )
|
||||
|
||||
reg_icp2 = pipreg.registration_icp(
|
||||
source_downsampled,
|
||||
model_downsampled,
|
||||
voxel_size*10,
|
||||
np.eye(4),
|
||||
pipreg.TransformationEstimationPointToPlane(),
|
||||
pipreg.ICPConvergenceCriteria(max_iteration=2000),
|
||||
)
|
||||
|
||||
reg_icp = pipreg.registration_icp(
|
||||
source_downsampled,
|
||||
model_downsampled,
|
||||
voxel_size,
|
||||
reg_icp2.transformation,
|
||||
pipreg.TransformationEstimationPointToPlane(),
|
||||
pipreg.ICPConvergenceCriteria(max_iteration=2000),
|
||||
)
|
||||
|
||||
return reg_icp2.transformation, reg_icp.transformation
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
model_dir = "/home/yan20/Desktop/nbv_rec/data/models/bear"
|
||||
model_path = os.path.join(model_dir,"mesh.ply")
|
||||
temp_name = "cad_model_world"
|
||||
cad_model = trimesh.load(model_path)
|
||||
|
||||
pts_path = "/home/yan20/nbv_rec/project/franka_control/first_real_pts_bear.txt"
|
||||
pts = np.loadtxt(pts_path)
|
||||
very_coarse_real_to_cad = np.eye(4)
|
||||
cad_model_pts = cad_model.vertices
|
||||
very_coarse_real_to_cad[:3,3] = np.mean(cad_model_pts, axis=0) - np.mean(pts, axis=0)
|
||||
very_coarse_cad_pts = PtsUtil.transform_point_cloud(pts, very_coarse_real_to_cad)
|
||||
|
||||
target_point = np.array([-3.422540776542676300e-02, -2.412379452948226755e-02, 1.123609126159126337e-01])
|
||||
|
||||
# 设置一个容忍度
|
||||
tolerance = 1e-5
|
||||
|
||||
# 计算每个点与目标点之间的距离
|
||||
distances = np.linalg.norm(very_coarse_cad_pts - target_point, axis=1)
|
||||
|
||||
# 统计距离小于容忍度的点的数量
|
||||
count = np.sum(distances < tolerance)
|
||||
print(count)
|
||||
print(very_coarse_cad_pts.shape)
|
||||
print(np.mean(pts, axis=0), np.mean(cad_model_pts, axis=0), np.mean(very_coarse_cad_pts, axis=0))
|
||||
pts = pts[distances > tolerance]
|
||||
np.savetxt(os.path.join(temp_name + "_filtered.txt"), pts)
|
||||
# very_coarse_real_to_cad[:3,3] = np.mean(cad_model_pts, axis=0) - np.mean(pts, axis=0)
|
||||
# very_coarse_cad_pts = PtsUtil.transform_point_cloud(pts, very_coarse_real_to_cad)
|
||||
# np.savetxt(os.path.join(temp_name + "_very_coarse_reg.txt"), very_coarse_cad_pts)
|
||||
|
||||
|
||||
# real_to_cad = PtsUtil.register(very_coarse_cad_pts, cad_model)
|
||||
# cad_pts = PtsUtil.transform_point_cloud(very_coarse_cad_pts, real_to_cad)
|
||||
# np.savetxt(os.path.join(temp_name + "_reg.txt"), cad_pts)
|
@ -53,12 +53,13 @@ class CADStrategyRunner(Runner):
|
||||
def load_experiment(self, backup_name=None):
|
||||
super().load_experiment(backup_name)
|
||||
|
||||
def split_scan_pts_and_obj_pts(self, world_pts, scan_pts_z, z_threshold = 0.003):
|
||||
scan_pts = world_pts[scan_pts_z < z_threshold]
|
||||
obj_pts = world_pts[scan_pts_z >= z_threshold]
|
||||
def split_scan_pts_and_obj_pts(self, world_pts, z_threshold = 0):
|
||||
scan_pts = world_pts[world_pts[:,2] < z_threshold]
|
||||
obj_pts = world_pts[world_pts[:,2] >= z_threshold]
|
||||
return scan_pts, obj_pts
|
||||
|
||||
def run_one_model(self, model_name):
|
||||
temp_dir = "/home/yan20/nbv_rec/project/franka_control/temp_output"
|
||||
result = dict()
|
||||
|
||||
shot_pts_list = []
|
||||
@ -66,6 +67,7 @@ class CADStrategyRunner(Runner):
|
||||
''' init robot '''
|
||||
Log.info("[Part 1/5] start init and register")
|
||||
ControlUtil.init()
|
||||
|
||||
''' load CAD model '''
|
||||
model_path = os.path.join(self.model_dir, model_name,"mesh.ply")
|
||||
temp_name = "cad_model_world"
|
||||
@ -75,21 +77,25 @@ class CADStrategyRunner(Runner):
|
||||
view_data = CommunicateUtil.get_view_data(init=True)
|
||||
first_cam_pts = ViewUtil.get_pts(view_data)
|
||||
first_cam_to_real_world = ControlUtil.get_pose()
|
||||
first_real_world_pts = PtsUtil.transform_point_cloud(first_cam_pts, first_cam_to_real_world)
|
||||
_, first_splitted_real_world_pts = self.split_scan_pts_and_obj_pts(first_real_world_pts)
|
||||
np.savetxt(f"first_real_pts_{model_name}.txt", first_splitted_real_world_pts)
|
||||
''' register '''
|
||||
Log.info("[Part 1/5] do registeration")
|
||||
cam_to_cad = PtsUtil.register(first_cam_pts, cad_model)
|
||||
cad_to_real_world = first_cam_to_real_world @ np.linalg.inv(cam_to_cad)
|
||||
real_world_to_cad = PtsUtil.register(first_splitted_real_world_pts, cad_model)
|
||||
cad_to_real_world = np.linalg.inv(real_world_to_cad)
|
||||
Log.success("[Part 1/5] finish init and register")
|
||||
real_world_to_blender_world = np.eye(4)
|
||||
real_world_to_blender_world[:3, 3] = np.asarray([0, 0, 0.9215])
|
||||
cad_to_blender_world = real_world_to_blender_world @ cad_to_real_world
|
||||
cad_model_blender_world:trimesh.Trimesh = cad_model.apply_transform(cad_to_blender_world)
|
||||
cad_model_real_world:trimesh.Trimesh = cad_model.apply_transform(cad_to_real_world)
|
||||
cad_model_real_world.export(os.path.join(temp_dir, f"real_world_{temp_name}.obj"))
|
||||
cad_model_blender_world:trimesh.Trimesh = cad_model.apply_transform(real_world_to_blender_world)
|
||||
|
||||
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
temp_dir = "/home/yan20/nbv_rec/project/franka_control/temp_output"
|
||||
cad_model_blender_world.export(os.path.join(temp_dir, f"{temp_name}.obj"))
|
||||
|
||||
scene_dir = os.path.join(temp_dir, temp_name)
|
||||
''' sample view '''
|
||||
Log.info("[Part 2/5] start running renderer")
|
||||
@ -102,7 +108,7 @@ class CADStrategyRunner(Runner):
|
||||
world_model_points = np.loadtxt(os.path.join(scene_dir, "points_and_normals.txt"))[:,:3]
|
||||
''' preprocess '''
|
||||
Log.info("[Part 3/5] start preprocessing data")
|
||||
save_scene_data_multithread(temp_dir, temp_name)
|
||||
save_scene_data(temp_dir, temp_name)
|
||||
Log.success("[Part 3/5] finish preprocessing data")
|
||||
|
||||
pts_dir = os.path.join(temp_dir,temp_name,"pts")
|
||||
@ -154,16 +160,13 @@ class CADStrategyRunner(Runner):
|
||||
|
||||
Log.info("[Part 5/5] start running robot")
|
||||
''' take best seq view '''
|
||||
|
||||
cad_model_real_world = cad_model_blender_world.apply_transform(np.linalg.inv(real_world_to_blender_world))
|
||||
cad_model_real_world_pts = cad_model_real_world.vertices
|
||||
cad_model_real_world.export(os.path.join(temp_dir, f"{temp_name}_real_world.obj"))
|
||||
voxel_downsampled_cad_model_real_world_pts = PtsUtil.voxel_downsample_point_cloud(cad_model_real_world_pts, self.voxel_size)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
target_scanned_pts = np.concatenate(sample_view_pts_list)
|
||||
voxel_downsampled_target_scanned_pts = PtsUtil.voxel_downsample_point_cloud(target_scanned_pts, self.voxel_size)
|
||||
result = dict()
|
||||
gt_scanned_pts = np.concatenate(render_pts, axis=0)
|
||||
voxel_down_sampled_gt_scanned_pts = PtsUtil.voxel_downsample_point_cloud(gt_scanned_pts, self.voxel_size)
|
||||
result["gt_final_coverage_rate_cad"] = ReconstructionUtil.compute_coverage_rate(voxel_downsampled_cad_model_real_world_pts, voxel_down_sampled_gt_scanned_pts, self.voxel_size)
|
||||
|
||||
result["gt_final_coverage_rate_cad"] = ReconstructionUtil.compute_coverage_rate(voxel_downsampled_target_scanned_pts, voxel_down_sampled_gt_scanned_pts, self.voxel_size)
|
||||
step = 1
|
||||
result["real_coverage_rate_seq"] = []
|
||||
for cam_to_world in cam_to_world_seq:
|
||||
@ -180,7 +183,7 @@ class CADStrategyRunner(Runner):
|
||||
scanned_pts = np.concatenate(shot_pts_list, axis=0)
|
||||
voxel_down_sampled_scanned_pts = PtsUtil.voxel_downsample_point_cloud(scanned_pts, self.voxel_size)
|
||||
voxel_down_sampled_scanned_pts_world = PtsUtil.transform_point_cloud(voxel_down_sampled_scanned_pts, first_cam_to_real_world)
|
||||
curr_CR = ReconstructionUtil.compute_coverage_rate(voxel_downsampled_cad_model_real_world_pts, voxel_down_sampled_scanned_pts_world, self.voxel_size)
|
||||
curr_CR = ReconstructionUtil.compute_coverage_rate(voxel_downsampled_target_scanned_pts, voxel_down_sampled_scanned_pts_world, self.voxel_size)
|
||||
Log.success(f"(step {step}/{len(cam_to_world_seq)}) current coverage: {curr_CR} | gt coverage: {result['gt_final_coverage_rate_cad']}")
|
||||
result["real_final_coverage_rate"] = curr_CR
|
||||
result["real_coverage_rate_seq"].append(curr_CR)
|
||||
|
@ -11,23 +11,23 @@ class ControlUtil:
|
||||
cnt_rotation = 0
|
||||
|
||||
BASE_TO_WORLD:np.ndarray = np.asarray([
|
||||
[1, 0, 0, -0.7323],
|
||||
[0, 1, 0, 0.05926],
|
||||
[0, 0, 1, -0.21],
|
||||
[1, 0, 0, -0.61091665],
|
||||
[0, 1, 0, -0.00309726],
|
||||
[0, 0, 1, -0.1136743],
|
||||
[0, 0, 0, 1]
|
||||
])
|
||||
|
||||
CAMERA_TO_GRIPPER:np.ndarray = np.asarray([
|
||||
[0, -1, 0, 0.01],
|
||||
[1, 0, 0, 0],
|
||||
[0, 0, 1, 0.075],
|
||||
[0, 0, 1, 0.08],
|
||||
[0, 0, 0, 1]
|
||||
])
|
||||
INIT_GRIPPER_POSE:np.ndarray = np.asarray([
|
||||
[ 0.44808722 , 0.61103352 , 0.65256787 , 0.36428118],
|
||||
[ 0.51676868 , -0.77267257 , 0.36866054, -0.26519364],
|
||||
[ 0.72948524 , 0.17203456 ,-0.66200043 , 0.60938969],
|
||||
[ 0. , 0. , 0. , 1. ]
|
||||
[ 0.46532393, 0.62171798, 0.63002284, 0.21230963],
|
||||
[ 0.43205618, -0.78075723, 0.45136491, -0.25127173],
|
||||
[ 0.77251656, 0.06217437, -0.63193429, 0.499957 ],
|
||||
[ 0. , 0. , 0. , 1. ],
|
||||
])
|
||||
|
||||
|
||||
@ -159,7 +159,7 @@ class ControlUtil:
|
||||
|
||||
if __name__ == "__main__":
|
||||
ControlUtil.connect_robot()
|
||||
|
||||
#ControlUtil.franka_reset()
|
||||
def main_test():
|
||||
print(ControlUtil.get_curr_gripper_to_base_pose())
|
||||
ControlUtil.init()
|
||||
@ -167,4 +167,7 @@ if __name__ == "__main__":
|
||||
def rotate_back(rotation):
|
||||
ControlUtil.rotate_display_table(-rotation)
|
||||
|
||||
rotate_back(122.0661478599)
|
||||
#rotate_back(45.3125623)
|
||||
ControlUtil.init()
|
||||
#print(ControlUtil.get_curr_gripper_to_base_pose())
|
||||
|
@ -3,6 +3,7 @@ import open3d as o3d
|
||||
import torch
|
||||
import trimesh
|
||||
from scipy.spatial import cKDTree
|
||||
from utils.pose_util import PoseUtil
|
||||
|
||||
|
||||
class PtsUtil:
|
||||
@ -117,8 +118,8 @@ class PtsUtil:
|
||||
return filtered_sampled_points[:, :3]
|
||||
|
||||
@staticmethod
|
||||
def register(pcl: np.ndarray, model: trimesh.Trimesh, voxel_size=0.01):
|
||||
radius_normal = voxel_size * 2
|
||||
def old_register(pcl: np.ndarray, model: trimesh.Trimesh, voxel_size=0.002):
|
||||
radius_normal = voxel_size * 3
|
||||
pipreg = o3d.pipelines.registration
|
||||
model_pcd = o3d.geometry.PointCloud()
|
||||
model_pcd.points = o3d.utility.Vector3dVector(model.vertices)
|
||||
@ -152,7 +153,7 @@ class PtsUtil:
|
||||
source_fpfh,
|
||||
model_fpfh,
|
||||
mutual_filter=True,
|
||||
max_correspondence_distance=voxel_size * 1.5,
|
||||
max_correspondence_distance=voxel_size * 2,
|
||||
estimation_method=pipreg.TransformationEstimationPointToPoint(False),
|
||||
ransac_n=4,
|
||||
checkers=[pipreg.CorrespondenceCheckerBasedOnEdgeLength(0.9)],
|
||||
@ -162,14 +163,59 @@ class PtsUtil:
|
||||
reg_icp = pipreg.registration_icp(
|
||||
source_downsampled,
|
||||
model_downsampled,
|
||||
voxel_size * 2,
|
||||
voxel_size/2,
|
||||
reg_ransac.transformation,
|
||||
pipreg.TransformationEstimationPointToPlane(),
|
||||
pipreg.ICPConvergenceCriteria(max_iteration=200),
|
||||
pipreg.ICPConvergenceCriteria(max_iteration=2000),
|
||||
)
|
||||
|
||||
return reg_icp.transformation
|
||||
|
||||
@staticmethod
|
||||
def chamfer_distance(pcl_a, pcl_b):
|
||||
distances = np.linalg.norm(pcl_a[:, None] - pcl_b, axis=2)
|
||||
min_distances = np.min(distances, axis=1)
|
||||
return np.sum(min_distances)
|
||||
|
||||
@staticmethod
|
||||
def register(pcl: np.ndarray, model: trimesh.Trimesh, voxel_size=0.008, max_iter=100000):
|
||||
model_pts = model.vertices
|
||||
sampled_world_pts = PtsUtil.voxel_downsample_point_cloud(pcl, voxel_size)
|
||||
sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_size)
|
||||
best_pose = np.eye(4)
|
||||
best_pose[:3, 3] = np.mean(sampled_world_pts, axis=0) - np.mean(sampled_model_pts, axis=0)
|
||||
best_distance = float('inf')
|
||||
temperature = 1.0
|
||||
cnt_unchange = 0
|
||||
for _ in range(max_iter):
|
||||
print(best_distance)
|
||||
new_pose = best_pose.copy()
|
||||
rotation_noise = np.random.randn(3)
|
||||
rotation_noise /= np.linalg.norm(rotation_noise)
|
||||
rotation_noise *= temperature
|
||||
translation_noise = np.random.randn(3) * 0.1 * temperature
|
||||
rotation_matrix = PoseUtil.get_uniform_rotation(0, 360)
|
||||
new_pose[:3, :3] = rotation_matrix @ best_pose[:3, :3]
|
||||
new_pose[:3, 3] += translation_noise
|
||||
|
||||
distance = PtsUtil.chamfer_distance(
|
||||
PtsUtil.transform_point_cloud(sampled_world_pts, new_pose),
|
||||
sampled_model_pts
|
||||
)
|
||||
|
||||
if distance < best_distance:
|
||||
best_pose, best_distance = new_pose, distance
|
||||
cnt_unchange = 0
|
||||
else:
|
||||
cnt_unchange += 1
|
||||
if cnt_unchange > 11110:
|
||||
break
|
||||
|
||||
temperature *= 0.999
|
||||
print(temperature)
|
||||
|
||||
return best_pose
|
||||
|
||||
@staticmethod
|
||||
def get_pts_from_depth(depth, cam_intrinsic, cam_extrinsic):
|
||||
h, w = depth.shape
|
||||
|
Loading…
x
Reference in New Issue
Block a user