add multiprocess
This commit is contained in:
parent
ba36803fba
commit
f6c4db859e
@ -4,7 +4,7 @@ import time
|
|||||||
import sys
|
import sys
|
||||||
np.random.seed(0)
|
np.random.seed(0)
|
||||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||||
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||||
from utils.reconstruction_util import ReconstructionUtil
|
from utils.reconstruction_util import ReconstructionUtil
|
||||||
from utils.data_load import DataLoadUtil
|
from utils.data_load import DataLoadUtil
|
||||||
from utils.pts_util import PtsUtil
|
from utils.pts_util import PtsUtil
|
||||||
@ -58,80 +58,77 @@ def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_int
|
|||||||
selected_points_indices = np.where(valid_indices)[0][selected_points_indices]
|
selected_points_indices = np.where(valid_indices)[0][selected_points_indices]
|
||||||
return selected_points_indices
|
return selected_points_indices
|
||||||
|
|
||||||
|
def process_frame(frame_id, root, scene, scan_points, file_type, target_mask_label, display_table_mask_label, random_downsample_N, voxel_size, filter_degree, min_z, max_z):
|
||||||
|
Log.info(f"[frame({frame_id})]Processing {scene} frame {frame_id}")
|
||||||
|
path = DataLoadUtil.get_path(root, scene, frame_id)
|
||||||
|
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||||
|
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||||
|
path, cam_info["near_plane"],
|
||||||
|
cam_info["far_plane"],
|
||||||
|
binocular=True
|
||||||
|
)
|
||||||
|
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
||||||
|
|
||||||
def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
target_mask_img_L = (mask_L == target_mask_label).all(axis=-1)
|
||||||
|
target_mask_img_R = (mask_R == target_mask_label).all(axis=-1)
|
||||||
|
|
||||||
''' configuration '''
|
target_points_L = get_world_points(depth_L, target_mask_img_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||||
|
target_points_R = get_world_points(depth_R, target_mask_img_R, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
||||||
|
|
||||||
|
sampled_target_points_L = PtsUtil.random_downsample_point_cloud(
|
||||||
|
target_points_L, random_downsample_N
|
||||||
|
)
|
||||||
|
sampled_target_points_R = PtsUtil.random_downsample_point_cloud(
|
||||||
|
target_points_R, random_downsample_N
|
||||||
|
)
|
||||||
|
|
||||||
|
has_points = sampled_target_points_L.shape[0] > 0 and sampled_target_points_R.shape[0] > 0
|
||||||
|
target_points = np.zeros((0, 3))
|
||||||
|
|
||||||
|
if has_points:
|
||||||
|
target_points = PtsUtil.get_overlapping_points(
|
||||||
|
sampled_target_points_L, sampled_target_points_R, voxel_size
|
||||||
|
)
|
||||||
|
|
||||||
|
if has_points and target_points.shape[0] > 0:
|
||||||
|
points_normals = DataLoadUtil.load_points_normals(root, scene, display_table_as_world_space_origin=True)
|
||||||
|
target_points = PtsUtil.filter_points(
|
||||||
|
target_points, points_normals, cam_info["cam_to_world"], voxel_size=0.002, theta=filter_degree, z_range=(min_z, max_z)
|
||||||
|
)
|
||||||
|
|
||||||
|
scan_points_indices_L = get_scan_points_indices(scan_points, mask_L, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||||
|
scan_points_indices_R = get_scan_points_indices(scan_points, mask_R, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
||||||
|
scan_points_indices = np.intersect1d(scan_points_indices_L, scan_points_indices_R)
|
||||||
|
|
||||||
|
if not has_points:
|
||||||
|
target_points = np.zeros((0, 3))
|
||||||
|
|
||||||
|
save_target_points(root, scene, frame_id, target_points, file_type=file_type)
|
||||||
|
save_scan_points_indices(root, scene, frame_id, scan_points_indices, file_type=file_type)
|
||||||
|
|
||||||
|
def save_scene_data(root, scene, file_type="txt"):
|
||||||
target_mask_label = (0, 255, 0, 255)
|
target_mask_label = (0, 255, 0, 255)
|
||||||
display_table_mask_label=(0, 0, 255, 255)
|
display_table_mask_label = (0, 0, 255, 255)
|
||||||
random_downsample_N = 32768
|
random_downsample_N = 32768
|
||||||
voxel_size=0.002
|
voxel_size = 0.002
|
||||||
filter_degree = 75
|
filter_degree = 75
|
||||||
min_z = 0.2
|
min_z = 0.2
|
||||||
max_z = 0.5
|
max_z = 0.5
|
||||||
|
|
||||||
''' scan points '''
|
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0, display_table_radius=0.25))
|
||||||
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=0.25))
|
|
||||||
|
|
||||||
''' read frame data(depth|mask|normal) '''
|
|
||||||
frame_num = DataLoadUtil.get_scene_seq_length(root, scene)
|
frame_num = DataLoadUtil.get_scene_seq_length(root, scene)
|
||||||
for frame_id in range(frame_num):
|
|
||||||
Log.info(f"[frame({frame_id}/{frame_num})]Processing {scene} frame {frame_id}")
|
|
||||||
path = DataLoadUtil.get_path(root, scene, frame_id)
|
|
||||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
|
||||||
depth_L, depth_R = DataLoadUtil.load_depth(
|
|
||||||
path, cam_info["near_plane"],
|
|
||||||
cam_info["far_plane"],
|
|
||||||
binocular=True
|
|
||||||
)
|
|
||||||
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
|
||||||
|
|
||||||
''' target points '''
|
with ThreadPoolExecutor() as executor:
|
||||||
mask_img_L = mask_L
|
futures = {executor.submit(process_frame, frame_id, root, scene, scan_points, file_type, target_mask_label, display_table_mask_label, random_downsample_N, voxel_size, filter_degree, min_z, max_z): frame_id for frame_id in range(frame_num)}
|
||||||
mask_img_R = mask_R
|
|
||||||
|
|
||||||
target_mask_img_L = (mask_L == target_mask_label).all(axis=-1)
|
for future in as_completed(futures):
|
||||||
target_mask_img_R = (mask_R == target_mask_label).all(axis=-1)
|
frame_id = futures[future]
|
||||||
|
try:
|
||||||
|
future.result()
|
||||||
|
except Exception as e:
|
||||||
|
Log.error(f"Error processing frame {frame_id}: {e}")
|
||||||
|
|
||||||
|
save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess
|
||||||
target_points_L = get_world_points(depth_L, target_mask_img_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
|
||||||
target_points_R = get_world_points(depth_R, target_mask_img_R, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
|
||||||
|
|
||||||
sampled_target_points_L = PtsUtil.random_downsample_point_cloud(
|
|
||||||
target_points_L, random_downsample_N
|
|
||||||
)
|
|
||||||
sampled_target_points_R = PtsUtil.random_downsample_point_cloud(
|
|
||||||
target_points_R, random_downsample_N
|
|
||||||
)
|
|
||||||
|
|
||||||
has_points = sampled_target_points_L.shape[0] > 0 and sampled_target_points_R.shape[0] > 0
|
|
||||||
if has_points:
|
|
||||||
target_points = PtsUtil.get_overlapping_points(
|
|
||||||
sampled_target_points_L, sampled_target_points_R, voxel_size
|
|
||||||
)
|
|
||||||
|
|
||||||
if has_points:
|
|
||||||
has_points = target_points.shape[0] > 0
|
|
||||||
|
|
||||||
if has_points:
|
|
||||||
points_normals = DataLoadUtil.load_points_normals(root, scene, display_table_as_world_space_origin=True)
|
|
||||||
target_points = PtsUtil.filter_points(
|
|
||||||
target_points, points_normals, cam_info["cam_to_world"],voxel_size=0.002, theta = filter_degree, z_range=(min_z, max_z)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
''' scan points indices '''
|
|
||||||
scan_points_indices_L = get_scan_points_indices(scan_points, mask_img_L, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
|
||||||
scan_points_indices_R = get_scan_points_indices(scan_points, mask_img_R, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
|
||||||
scan_points_indices = np.intersect1d(scan_points_indices_L, scan_points_indices_R)
|
|
||||||
|
|
||||||
if not has_points:
|
|
||||||
target_points = np.zeros((0, 3))
|
|
||||||
|
|
||||||
save_target_points(root, scene, frame_id, target_points, file_type=file_type)
|
|
||||||
save_scan_points_indices(root, scene, frame_id, scan_points_indices, file_type=file_type)
|
|
||||||
|
|
||||||
save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
Loading…
x
Reference in New Issue
Block a user