add multiprocess
This commit is contained in:
parent
ba36803fba
commit
f6c4db859e
@ -4,7 +4,7 @@ import time
|
||||
import sys
|
||||
np.random.seed(0)
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
|
||||
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||
from utils.reconstruction_util import ReconstructionUtil
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pts_util import PtsUtil
|
||||
@ -58,25 +58,8 @@ def get_scan_points_indices(scan_points, mask, display_table_mask_label, cam_int
|
||||
selected_points_indices = np.where(valid_indices)[0][selected_points_indices]
|
||||
return selected_points_indices
|
||||
|
||||
|
||||
def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
||||
|
||||
''' configuration '''
|
||||
target_mask_label = (0, 255, 0, 255)
|
||||
display_table_mask_label=(0, 0, 255, 255)
|
||||
random_downsample_N = 32768
|
||||
voxel_size=0.002
|
||||
filter_degree = 75
|
||||
min_z = 0.2
|
||||
max_z = 0.5
|
||||
|
||||
''' scan points '''
|
||||
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0,display_table_radius=0.25))
|
||||
|
||||
''' read frame data(depth|mask|normal) '''
|
||||
frame_num = DataLoadUtil.get_scene_seq_length(root, scene)
|
||||
for frame_id in range(frame_num):
|
||||
Log.info(f"[frame({frame_id}/{frame_num})]Processing {scene} frame {frame_id}")
|
||||
def process_frame(frame_id, root, scene, scan_points, file_type, target_mask_label, display_table_mask_label, random_downsample_N, voxel_size, filter_degree, min_z, max_z):
|
||||
Log.info(f"[frame({frame_id})]Processing {scene} frame {frame_id}")
|
||||
path = DataLoadUtil.get_path(root, scene, frame_id)
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(
|
||||
@ -86,14 +69,9 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
||||
)
|
||||
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
||||
|
||||
''' target points '''
|
||||
mask_img_L = mask_L
|
||||
mask_img_R = mask_R
|
||||
|
||||
target_mask_img_L = (mask_L == target_mask_label).all(axis=-1)
|
||||
target_mask_img_R = (mask_R == target_mask_label).all(axis=-1)
|
||||
|
||||
|
||||
target_points_L = get_world_points(depth_L, target_mask_img_L, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||
target_points_R = get_world_points(depth_R, target_mask_img_R, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
||||
|
||||
@ -105,24 +83,21 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
||||
)
|
||||
|
||||
has_points = sampled_target_points_L.shape[0] > 0 and sampled_target_points_R.shape[0] > 0
|
||||
target_points = np.zeros((0, 3))
|
||||
|
||||
if has_points:
|
||||
target_points = PtsUtil.get_overlapping_points(
|
||||
sampled_target_points_L, sampled_target_points_R, voxel_size
|
||||
)
|
||||
|
||||
if has_points:
|
||||
has_points = target_points.shape[0] > 0
|
||||
|
||||
if has_points:
|
||||
if has_points and target_points.shape[0] > 0:
|
||||
points_normals = DataLoadUtil.load_points_normals(root, scene, display_table_as_world_space_origin=True)
|
||||
target_points = PtsUtil.filter_points(
|
||||
target_points, points_normals, cam_info["cam_to_world"],voxel_size=0.002, theta = filter_degree, z_range=(min_z, max_z)
|
||||
target_points, points_normals, cam_info["cam_to_world"], voxel_size=0.002, theta=filter_degree, z_range=(min_z, max_z)
|
||||
)
|
||||
|
||||
|
||||
''' scan points indices '''
|
||||
scan_points_indices_L = get_scan_points_indices(scan_points, mask_img_L, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||
scan_points_indices_R = get_scan_points_indices(scan_points, mask_img_R, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
||||
scan_points_indices_L = get_scan_points_indices(scan_points, mask_L, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world"])
|
||||
scan_points_indices_R = get_scan_points_indices(scan_points, mask_R, display_table_mask_label, cam_info["cam_intrinsic"], cam_info["cam_to_world_R"])
|
||||
scan_points_indices = np.intersect1d(scan_points_indices_L, scan_points_indices_R)
|
||||
|
||||
if not has_points:
|
||||
@ -131,6 +106,28 @@ def save_scene_data(root, scene, scene_idx=0, scene_total=1,file_type="txt"):
|
||||
save_target_points(root, scene, frame_id, target_points, file_type=file_type)
|
||||
save_scan_points_indices(root, scene, frame_id, scan_points_indices, file_type=file_type)
|
||||
|
||||
def save_scene_data(root, scene, file_type="txt"):
|
||||
target_mask_label = (0, 255, 0, 255)
|
||||
display_table_mask_label = (0, 0, 255, 255)
|
||||
random_downsample_N = 32768
|
||||
voxel_size = 0.002
|
||||
filter_degree = 75
|
||||
min_z = 0.2
|
||||
max_z = 0.5
|
||||
|
||||
scan_points = np.asarray(ReconstructionUtil.generate_scan_points(display_table_top=0, display_table_radius=0.25))
|
||||
frame_num = DataLoadUtil.get_scene_seq_length(root, scene)
|
||||
|
||||
with ThreadPoolExecutor() as executor:
|
||||
futures = {executor.submit(process_frame, frame_id, root, scene, scan_points, file_type, target_mask_label, display_table_mask_label, random_downsample_N, voxel_size, filter_degree, min_z, max_z): frame_id for frame_id in range(frame_num)}
|
||||
|
||||
for future in as_completed(futures):
|
||||
frame_id = futures[future]
|
||||
try:
|
||||
future.result()
|
||||
except Exception as e:
|
||||
Log.error(f"Error processing frame {frame_id}: {e}")
|
||||
|
||||
save_scan_points(root, scene, scan_points) # The "done" flag of scene preprocess
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user