456 lines
16 KiB
Python
Raw Permalink Normal View History

2025-04-09 15:17:24 +08:00
import pybullet as p
import pybullet_data
import numpy as np
import os
import time
2025-03-13 14:48:15 +08:00
from PytorchBoot.runners.runner import Runner
import PytorchBoot.stereotype as stereotype
2025-04-09 15:17:24 +08:00
from PytorchBoot.config import ConfigManager
from utils.control import ControlUtil
2025-03-13 14:48:15 +08:00
@stereotype.runner("simulator")
class Simulator(Runner):
2025-04-09 15:17:24 +08:00
CREATE: str = "create"
SIMULATE: str = "simulate"
INIT_GRIPPER_POSE:np.ndarray = np.asarray(
[[0.41869126 ,0.87596275 , 0.23951774 , 0.36005292],
[ 0.70787907 ,-0.4800251 , 0.51813998 ,-0.40499909],
[ 0.56884584, -0.04739109 ,-0.82107382 ,0.76881103],
[ 0. , 0. , 0. , 1. ]])
TURNTABLE_WORLD_TO_PYBULLET_WORLD:np.ndarray = np.asarray(
[[1, 0, 0, 0.8],
[0, 1, 0, 0],
[0, 0, 1, 0.5],
[0, 0, 0, 1]])
debug_pose = np.asarray([
[
0.992167055606842,
-0.10552699863910675,
0.06684812903404236,
-0.07388903945684433
],
[
0.10134342312812805,
0.3670985698699951,
-0.9246448874473572,
-0.41582486033439636
],
[
0.07303514331579208,
0.9241767525672913,
0.37491756677627563,
1.0754833221435547
],
[
0.0,
0.0,
0.0,
1.0
]])
2025-03-13 14:48:15 +08:00
def __init__(self, config_path):
super().__init__(config_path)
self.config_path = config_path
2025-04-09 15:17:24 +08:00
self.robot_id = None
self.turntable_id = None
self.target_id = None
camera_config = ConfigManager.get("simulation", "camera")
self.camera_params = {
'width': camera_config["width"],
'height': camera_config["height"],
'fov': camera_config["fov"],
'near': camera_config["near"],
'far': camera_config["far"]
}
self.sim_config = ConfigManager.get("simulation")
2025-03-13 14:48:15 +08:00
2025-04-09 15:17:24 +08:00
def run(self, cmd):
print(f"Simulator run {cmd}")
if cmd == self.CREATE:
self.prepare_env()
self.create_env()
elif cmd == self.SIMULATE:
self.simulate()
2025-03-13 14:48:15 +08:00
2025-04-09 15:17:24 +08:00
def simulate(self):
self.reset()
self.init()
debug_pose = Simulator.debug_pose
offset = np.asarray([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]])
debug_pose = debug_pose @ offset
for _ in range(10000):
debug_pose_2 = np.eye(4)
debug_pose_2[0,0] = -1
debug_pose_2[2,3] = 0.5
self.move_to(debug_pose_2)
# Wait for the system to stabilize
for _ in range(20): # Simulate 20 steps to ensure stability
p.stepSimulation()
time.sleep(0.001) # Add small delay to ensure physics simulation
depth_img, segm_img = self.take_picture()
p.stepSimulation()
2025-03-13 14:48:15 +08:00
2025-04-09 15:17:24 +08:00
def prepare_env(self):
p.connect(p.GUI)
p.setAdditionalSearchPath(pybullet_data.getDataPath())
p.setGravity(0, 0, 0)
p.loadURDF("plane.urdf")
2025-03-13 14:48:15 +08:00
def create_env(self):
2025-04-09 15:17:24 +08:00
print(self.config)
robot_config = self.sim_config["robot"]
turntable_config = self.sim_config["turntable"]
target_config = self.sim_config["target"]
self.robot_id = p.loadURDF(
robot_config["urdf_path"],
robot_config["initial_position"],
p.getQuaternionFromEuler(robot_config["initial_orientation"]),
useFixedBase=True
)
p.changeDynamics(
self.robot_id,
linkIndex=-1,
mass=0,
linearDamping=0,
angularDamping=0,
lateralFriction=0
)
visual_shape_id = p.createVisualShape(
shapeType=p.GEOM_CYLINDER,
radius=turntable_config["radius"],
length=turntable_config["height"],
rgbaColor=[0.7, 0.7, 0.7, 1]
)
collision_shape_id = p.createCollisionShape(
shapeType=p.GEOM_CYLINDER,
radius=turntable_config["radius"],
height=turntable_config["height"]
)
self.turntable_id = p.createMultiBody(
baseMass=0, # 设置质量为0使其成为静态物体
baseCollisionShapeIndex=collision_shape_id,
baseVisualShapeIndex=visual_shape_id,
basePosition=turntable_config["center_position"]
)
# 禁用转盘的动力学
p.changeDynamics(
self.turntable_id,
-1, # -1 表示基座
mass=0,
linearDamping=0,
angularDamping=0,
lateralFriction=0
)
obj_path = os.path.join(target_config["obj_dir"], target_config["obj_name"], "mesh.obj")
assert os.path.exists(obj_path), f"Error: File not found at {obj_path}"
# 加载OBJ文件作为目标物体
target_visual = p.createVisualShape(
shapeType=p.GEOM_MESH,
fileName=obj_path,
rgbaColor=target_config["rgba_color"],
specularColor=[0.4, 0.4, 0.4],
meshScale=[target_config["scale"]] * 3
)
# 使用简化的碰撞形状
target_collision = p.createCollisionShape(
shapeType=p.GEOM_MESH,
fileName=obj_path,
meshScale=[target_config["scale"]] * 3,
flags=p.GEOM_FORCE_CONCAVE_TRIMESH # 尝试使用凹面网格
)
# 创建目标物体
self.target_id = p.createMultiBody(
baseMass=0, # 设置质量为0使其成为静态物体
baseCollisionShapeIndex=target_collision,
baseVisualShapeIndex=target_visual,
basePosition=[
turntable_config["center_position"][0],
turntable_config["center_position"][1],
turntable_config["height"] + turntable_config["center_position"][2]
],
baseOrientation=p.getQuaternionFromEuler([np.pi/2, 0, 0])
)
# 禁用目标物体的动力学
p.changeDynamics(
self.target_id,
-1, # -1 表示基座
mass=0,
linearDamping=0,
angularDamping=0,
lateralFriction=0
)
# 创建固定约束,将目标物体固定在转盘上
cid = p.createConstraint(
parentBodyUniqueId=self.turntable_id,
parentLinkIndex=-1, # -1 表示基座
childBodyUniqueId=self.target_id,
childLinkIndex=-1, # -1 表示基座
jointType=p.JOINT_FIXED,
jointAxis=[0, 0, 0],
parentFramePosition=[0, 0, 0], # 相对于转盘中心的偏移
childFramePosition=[0, 0, 0] # 相对于物体中心的偏移
)
# 设置约束参数
p.changeConstraint(cid, maxForce=100) # 设置最大力,确保约束稳定
def move_robot_to_pose(self, target_matrix):
# 从4x4齐次矩阵中提取位置前3个元素
position = target_matrix[:3, 3]
# 从3x3旋转矩阵中提取方向四元数
R = target_matrix[:3, :3]
# 计算四元数的w分量
w = np.sqrt(max(0, 1 + R[0,0] + R[1,1] + R[2,2])) / 2
# 避免除零错误,同时处理不同情况
if abs(w) < 1e-8:
# 当w接近0时的特殊情况
x = np.sqrt(max(0, 1 + R[0,0] - R[1,1] - R[2,2])) / 2
y = np.sqrt(max(0, 1 - R[0,0] + R[1,1] - R[2,2])) / 2
z = np.sqrt(max(0, 1 - R[0,0] - R[1,1] + R[2,2])) / 2
# 确定符号
if R[2,1] - R[1,2] < 0: x = -x
if R[0,2] - R[2,0] < 0: y = -y
if R[1,0] - R[0,1] < 0: z = -z
else:
# 正常情况
x = (R[2,1] - R[1,2]) / (4 * w)
y = (R[0,2] - R[2,0]) / (4 * w)
z = (R[1,0] - R[0,1]) / (4 * w)
orientation = (x, y, z, w)
# 设置IK求解参数
num_joints = p.getNumJoints(self.robot_id)
lower_limits = []
upper_limits = []
joint_ranges = []
rest_poses = []
# 获取关节限制和默认姿态
for i in range(num_joints):
joint_info = p.getJointInfo(self.robot_id, i)
lower_limits.append(joint_info[8])
upper_limits.append(joint_info[9])
joint_ranges.append(joint_info[9] - joint_info[8])
rest_poses.append(0) # 可以设置一个较好的默认姿态
# 使用增强版IK求解器考虑碰撞避障
joint_poses = p.calculateInverseKinematics(
self.robot_id,
7, # end effector link index
position,
orientation,
lowerLimits=lower_limits,
upperLimits=upper_limits,
jointRanges=joint_ranges,
restPoses=rest_poses,
maxNumIterations=100,
residualThreshold=1e-4
)
# 分步移动到目标位置,同时检查碰撞
current_poses = [p.getJointState(self.robot_id, i)[0] for i in range(7)]
steps = 50 # 分50步移动
for step in range(steps):
# 线性插值计算中间位置
intermediate_poses = []
for current, target in zip(current_poses, joint_poses):
t = (step + 1) / steps
intermediate = current + (target - current) * t
intermediate_poses.append(intermediate)
# 设置关节位置
for i in range(7):
p.setJointMotorControl2(
self.robot_id,
i,
p.POSITION_CONTROL,
intermediate_poses[i]
)
# 执行一步模拟
p.stepSimulation()
# 检查碰撞
if p.getContactPoints(self.robot_id, self.turntable_id):
print("检测到潜在碰撞,停止移动")
return False
return True
def rotate_turntable(self, angle_degrees):
# 旋转转盘
current_pos, current_orn = p.getBasePositionAndOrientation(self.turntable_id)
current_orn = p.getEulerFromQuaternion(current_orn)
new_orn = list(current_orn)
new_orn[2] += np.radians(angle_degrees)
new_orn_quat = p.getQuaternionFromEuler(new_orn)
p.resetBasePositionAndOrientation(
self.turntable_id,
current_pos,
new_orn_quat
)
# 同时旋转目标物体
target_pos, target_orn = p.getBasePositionAndOrientation(self.target_id)
target_orn = p.getEulerFromQuaternion(target_orn)
# 更新目标物体的方向
target_orn = list(target_orn)
target_orn[2] += np.radians(angle_degrees)
target_orn_quat = p.getQuaternionFromEuler(target_orn)
# 计算物体新的位置(绕转盘中心旋转)
turntable_center = current_pos
relative_pos = np.array(target_pos) - np.array(turntable_center)
# 创建旋转矩阵
theta = np.radians(angle_degrees)
rotation_matrix = np.array([
[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]
])
# 计算新的相对位置
new_relative_pos = rotation_matrix.dot(relative_pos)
new_pos = np.array(turntable_center) + new_relative_pos
# 更新目标物体的位置和方向
p.resetBasePositionAndOrientation(
self.target_id,
new_pos,
target_orn_quat
)
def get_camera_pose(self):
end_effector_link = 7 # Franka末端执行器的链接索引
state = p.getLinkState(self.robot_id, end_effector_link)
ee_pos = state[0] # 世界坐标系中的位置
camera_orn = state[1] # 世界坐标系中的朝向(四元数)
# 计算相机的视角矩阵
rot_matrix = p.getMatrixFromQuaternion(camera_orn)
rot_matrix = np.array(rot_matrix).reshape(3, 3)
# 相机的前向向量与末端执行器的x轴对齐
camera_forward = rot_matrix.dot(np.array([0, 0, 1])) # x轴方向
# 将相机位置向前偏移0.1米
offset = 0.12
camera_pos = np.array(ee_pos) + camera_forward * offset
camera_target = camera_pos + camera_forward
# 相机的上向量与末端执行器的z轴对齐
camera_up = rot_matrix.dot(np.array([1, 0, 0])) # z轴方向
return camera_pos, camera_target, camera_up
def take_picture(self):
camera_pos, camera_target, camera_up = self.get_camera_pose()
view_matrix = p.computeViewMatrix(
cameraEyePosition=camera_pos,
cameraTargetPosition=camera_target,
cameraUpVector=camera_up
)
projection_matrix = p.computeProjectionMatrixFOV(
fov=self.camera_params['fov'],
aspect=self.camera_params['width'] / self.camera_params['height'],
nearVal=self.camera_params['near'],
farVal=self.camera_params['far']
)
_,_,rgb_img,depth_img,segm_img = p.getCameraImage(
width=self.camera_params['width'],
height=self.camera_params['height'],
viewMatrix=view_matrix,
projectionMatrix=projection_matrix,
renderer=p.ER_BULLET_HARDWARE_OPENGL
)
depth_img = self.camera_params['far'] * self.camera_params['near'] / (
self.camera_params['far'] - (self.camera_params['far'] - self.camera_params['near']) * depth_img)
depth_img = np.array(depth_img)
segm_img = np.array(segm_img)
return depth_img, segm_img
def reset(self):
target_pos = [0.5, 0, 1]
target_orn = p.getQuaternionFromEuler([np.pi, 0, 0])
target_matrix = np.eye(4)
target_matrix[:3, 3] = target_pos
target_matrix[:3, :3] = np.asarray(p.getMatrixFromQuaternion(target_orn)).reshape(3,3)
self.move_robot_to_pose(target_matrix)
def init(self):
self.move_to(Simulator.INIT_GRIPPER_POSE)
def move_to(self, pose: np.ndarray):
#delta_degree, min_new_cam_to_world = ControlUtil.solve_display_table_rot_and_cam_to_world(pose)
#print(delta_degree)
min_new_cam_to_pybullet_world = Simulator.TURNTABLE_WORLD_TO_PYBULLET_WORLD@pose
self.move_to_cam_pose(min_new_cam_to_pybullet_world)
#self.rotate_turntable(delta_degree)
def __del__(self):
p.disconnect()
2025-03-13 14:48:15 +08:00
def create_experiment(self, backup_name=None):
return super().create_experiment(backup_name)
def load_experiment(self, backup_name=None):
2025-04-09 15:17:24 +08:00
super().load_experiment(backup_name)
def move_to_cam_pose(self, camera_pose: np.ndarray):
# 从相机位姿矩阵中提取位置和旋转矩阵
camera_pos = camera_pose[:3, 3]
R_camera = camera_pose[:3, :3]
# 相机的朝向向量z轴
forward = R_camera[:, 2]
# 由于相机与末端执行器之间有固定偏移,需要计算末端执行器位置
# 相机在末端执行器前方0.12米
gripper_pos = camera_pos - forward * 0.12
# 末端执行器的旋转矩阵需要考虑与相机坐标系的固定变换
# 假设相机的forward对应gripper的z轴相机的x轴对应gripper的x轴
R_gripper = R_camera
# 构建4x4齐次变换矩阵
gripper_pose = np.eye(4)
gripper_pose[:3, :3] = R_gripper
gripper_pose[:3, 3] = gripper_pos
print(gripper_pose)
# 移动机器人到计算出的位姿
return self.move_robot_to_pose(gripper_pose)