nbv_reconstruction/runners/strategy_generator.py

111 lines
5.7 KiB
Python
Raw Normal View History

2024-08-21 17:11:56 +08:00
import os
2024-08-22 20:27:21 +08:00
import json
import numpy as np
2024-08-21 17:11:56 +08:00
from PytorchBoot.runners.runner import Runner
from PytorchBoot.config import ConfigManager
from PytorchBoot.utils import Log
2024-08-21 17:11:56 +08:00
import PytorchBoot.stereotype as stereotype
2024-09-02 23:47:52 +08:00
from PytorchBoot.status import status_manager
2024-08-21 17:11:56 +08:00
2024-08-22 20:27:21 +08:00
from utils.data_load import DataLoadUtil
from utils.reconstruction import ReconstructionUtil
from utils.pts import PtsUtil
2024-08-22 20:27:21 +08:00
2024-08-22 22:28:20 +08:00
@stereotype.runner("strategy_generator")
2024-08-21 17:11:56 +08:00
class StrategyGenerator(Runner):
def __init__(self, config):
super().__init__(config)
self.load_experiment("generate")
2024-09-02 23:47:52 +08:00
self.status_info = {
"status_manager": status_manager,
"app_name": "generate",
"runner_name": "strategy_generator"
}
2024-09-08 19:43:01 +08:00
self.to_specified_dir = ConfigManager.get("runner", "generate", "to_specified_dir")
2024-08-21 17:11:56 +08:00
def run(self):
dataset_name_list = ConfigManager.get("runner", "generate", "dataset_list")
2024-08-22 20:27:21 +08:00
voxel_threshold, overlap_threshold = ConfigManager.get("runner","generate","voxel_threshold"), ConfigManager.get("runner","generate","overlap_threshold")
self.save_pts = ConfigManager.get("runner","generate","save_points")
2024-09-02 23:47:52 +08:00
for dataset_idx in range(len(dataset_name_list)):
dataset_name = dataset_name_list[dataset_idx]
status_manager.set_progress("generate", "strategy_generator", "dataset", dataset_idx, len(dataset_name_list))
2024-08-22 20:27:21 +08:00
root_dir = ConfigManager.get("datasets", dataset_name, "root_dir")
2024-09-08 19:43:01 +08:00
scene_name_list = os.listdir(root_dir)[:10]
cnt = 0
total = len(scene_name_list)
for scene_name in scene_name_list:
Log.info(f"({dataset_name})Processing [{cnt}/{total}]: {scene_name}")
2024-09-02 23:47:52 +08:00
status_manager.set_progress("generate", "strategy_generator", "scene", cnt, total)
2024-09-08 19:43:01 +08:00
self.generate_sequence(root_dir, dataset_name, scene_name,voxel_threshold, overlap_threshold, )
cnt += 1
2024-09-02 23:47:52 +08:00
status_manager.set_progress("generate", "strategy_generator", "scene", total, total)
status_manager.set_progress("generate", "strategy_generator", "dataset", len(dataset_name_list), len(dataset_name_list))
2024-08-21 17:11:56 +08:00
def create_experiment(self, backup_name=None):
super().create_experiment(backup_name)
output_dir = os.path.join(str(self.experiment_path), "output")
os.makedirs(output_dir)
def load_experiment(self, backup_name=None):
super().load_experiment(backup_name)
2024-09-08 19:43:01 +08:00
def generate_sequence(self, root, dataset_name, scene_name, voxel_threshold, overlap_threshold):
2024-09-02 23:47:52 +08:00
status_manager.set_status("generate", "strategy_generator", "scene", scene_name)
frame_num = DataLoadUtil.get_scene_seq_length(root, scene_name)
2024-09-08 19:43:01 +08:00
model_points_normals = DataLoadUtil.load_points_normals(root, scene_name)
model_pts = model_points_normals[:,:3]
down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold)
2024-09-08 19:43:01 +08:00
2024-08-21 17:11:56 +08:00
pts_list = []
for frame_idx in range(frame_num):
path = DataLoadUtil.get_path(root, scene_name, frame_idx)
2024-09-08 19:43:01 +08:00
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
2024-09-02 23:47:52 +08:00
status_manager.set_progress("generate", "strategy_generator", "loading frame", frame_idx, frame_num)
2024-09-08 19:43:01 +08:00
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
sampled_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=45)
if self.save_pts:
pts_dir = os.path.join(root,scene_name, "pts")
if not os.path.exists(pts_dir):
os.makedirs(pts_dir)
np.savetxt(os.path.join(pts_dir, f"{frame_idx}.txt"), sampled_point_cloud)
2024-08-21 17:11:56 +08:00
pts_list.append(sampled_point_cloud)
2024-09-02 23:47:52 +08:00
status_manager.set_progress("generate", "strategy_generator", "loading frame", frame_num, frame_num)
2024-09-08 19:43:01 +08:00
limited_useful_view, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_model_pts, pts_list, threshold=voxel_threshold, overlap_threshold=overlap_threshold, status_info=self.status_info)
2024-08-22 20:27:21 +08:00
data_pairs = self.generate_data_pairs(limited_useful_view)
seq_save_data = {
"data_pairs": data_pairs,
"best_sequence": limited_useful_view,
"max_coverage_rate": limited_useful_view[-1][1]
}
2024-09-02 23:47:52 +08:00
status_manager.set_status("generate", "strategy_generator", "max_coverage_rate", limited_useful_view[-1][1])
Log.success(f"Scene <{scene_name}> Finished, Max Coverage Rate: {limited_useful_view[-1][1]}, Best Sequence length: {len(limited_useful_view)}")
2024-09-08 19:43:01 +08:00
if self.to_specified_dir:
output_dir = ConfigManager.get("datasets", dataset_name,"output_dir")
output_label_path = os.path.join(output_dir, f"{scene_name}.json")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
else:
output_label_path = DataLoadUtil.get_label_path(root, scene_name)
2024-08-22 20:27:21 +08:00
with open(output_label_path, 'w') as f:
json.dump(seq_save_data, f)
2024-09-08 19:43:01 +08:00
DataLoadUtil.save_downsampled_world_model_points(root, scene_name, down_sampled_model_pts)
2024-08-22 20:27:21 +08:00
def generate_data_pairs(self, useful_view):
data_pairs = []
2024-08-30 17:57:47 +08:00
for next_view_idx in range(1, len(useful_view)):
2024-08-22 20:27:21 +08:00
scanned_views = useful_view[:next_view_idx]
next_view = useful_view[next_view_idx]
data_pairs.append((scanned_views, next_view))
return data_pairs
2024-08-21 17:11:56 +08:00