103 lines
3.3 KiB
Python
Raw Normal View History

2024-12-28 10:01:43 +00:00
import torch
import torch.nn as nn
import sys
sys.path.append('..')
from pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG
import pointnet2.pytorch_utils as pt_utils
def get_model(input_channels=0):
return Pointnet2MSG(input_channels=input_channels)
NPOINTS = [4096, 1024, 256, 64]
RADIUS = [[0.1, 0.5], [0.5, 1.0], [1.0, 2.0], [2.0, 4.0]]
NSAMPLE = [[16, 32], [16, 32], [16, 32], [16, 32]]
MLPS = [[[16, 16, 32], [32, 32, 64]], [[64, 64, 128], [64, 96, 128]],
[[128, 196, 256], [128, 196, 256]], [[256, 256, 512], [256, 384, 512]]]
FP_MLPS = [[128, 128], [256, 256], [512, 512], [512, 512]]
CLS_FC = [128]
DP_RATIO = 0.5
class Pointnet2MSG(nn.Module):
def __init__(self, input_channels=6):
super().__init__()
self.SA_modules = nn.ModuleList()
channel_in = input_channels
skip_channel_list = [input_channels]
for k in range(NPOINTS.__len__()):
mlps = MLPS[k].copy()
channel_out = 0
for idx in range(mlps.__len__()):
mlps[idx] = [channel_in] + mlps[idx]
channel_out += mlps[idx][-1]
self.SA_modules.append(
PointnetSAModuleMSG(
npoint=NPOINTS[k],
radii=RADIUS[k],
nsamples=NSAMPLE[k],
mlps=mlps,
use_xyz=True,
bn=True
)
)
skip_channel_list.append(channel_out)
channel_in = channel_out
self.FP_modules = nn.ModuleList()
for k in range(FP_MLPS.__len__()):
pre_channel = FP_MLPS[k + 1][-1] if k + 1 < len(FP_MLPS) else channel_out
self.FP_modules.append(
PointnetFPModule(mlp=[pre_channel + skip_channel_list[k]] + FP_MLPS[k])
)
cls_layers = []
pre_channel = FP_MLPS[0][-1]
for k in range(0, CLS_FC.__len__()):
cls_layers.append(pt_utils.Conv1d(pre_channel, CLS_FC[k], bn=True))
pre_channel = CLS_FC[k]
cls_layers.append(pt_utils.Conv1d(pre_channel, 1, activation=None))
cls_layers.insert(1, nn.Dropout(0.5))
self.cls_layer = nn.Sequential(*cls_layers)
def _break_up_pc(self, pc):
xyz = pc[..., 0:3].contiguous()
features = (
pc[..., 3:].transpose(1, 2).contiguous()
if pc.size(-1) > 3 else None
)
return xyz, features
def forward(self, pointcloud: torch.cuda.FloatTensor):
xyz, features = self._break_up_pc(pointcloud)
l_xyz, l_features = [xyz], [features]
for i in range(len(self.SA_modules)):
li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i])
print(li_xyz.shape, li_features.shape)
l_xyz.append(li_xyz)
l_features.append(li_features)
for i in range(-1, -(len(self.FP_modules) + 1), -1):
l_features[i - 1] = self.FP_modules[i](
l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i]
)
pred_cls = self.cls_layer(l_features[0]).transpose(1, 2).contiguous() # (B, N, 1)
return pred_cls
if __name__ == '__main__':
net = Pointnet2MSG(0).cuda()
pts = torch.randn(2, 1024, 3).cuda()
pre = net(pts)
print(pre.shape)