add data_splitor, modify dataset and encoder
This commit is contained in:
@@ -1,6 +1,7 @@
|
||||
import numpy as np
|
||||
from PytorchBoot.dataset import BaseDataset
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
|
||||
import sys
|
||||
sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction")
|
||||
@@ -18,7 +19,7 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
self.split_file_path = config["split_file"]
|
||||
self.scene_name_list = self.load_scene_name_list()
|
||||
self.datalist = self.get_datalist()
|
||||
self.pts_num = 1024
|
||||
self.pts_num = config["pts_num"]
|
||||
|
||||
def load_scene_name_list(self):
|
||||
scene_name_list = []
|
||||
@@ -76,13 +77,9 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
|
||||
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
||||
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
||||
nbv_depth = DataLoadUtil.load_depth(nbv_path)
|
||||
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
||||
nbv_mask = DataLoadUtil.load_seg(nbv_path)
|
||||
best_frame_to_world = cam_info["cam_to_world"]
|
||||
best_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), best_frame_to_world)
|
||||
best_target_point_cloud = DataLoadUtil.get_target_point_cloud(nbv_depth, cam_info["cam_intrinsic"], best_to_1_pose, nbv_mask)["points_world"]
|
||||
downsampled_best_target_point_cloud = PtsUtil.random_downsample_point_cloud(best_target_point_cloud, self.pts_num)
|
||||
best_to_1_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(best_to_1_pose[:3,:3]))
|
||||
best_to_1_trans = best_to_1_pose[:3,3]
|
||||
best_to_1_9d = np.concatenate([best_to_1_6d, best_to_1_trans], axis=0)
|
||||
@@ -91,7 +88,6 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
"scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32),
|
||||
"scanned_coverage_rate": np.asarray(scanned_coverages_rate,dtype=np.float32),
|
||||
"scanned_n_to_1_pose_9d": np.asarray(scanned_n_to_1_pose,dtype=np.float32),
|
||||
"best_pts": np.asarray(downsampled_best_target_point_cloud,dtype=np.float32),
|
||||
"best_coverage_rate": nbv_coverage_rate,
|
||||
"best_to_1_pose_9d": best_to_1_9d,
|
||||
"max_coverage_rate": max_coverage_rate,
|
||||
@@ -102,6 +98,27 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
|
||||
def __len__(self):
|
||||
return len(self.datalist)
|
||||
|
||||
def get_collate_fn(self):
|
||||
def collate_fn(batch):
|
||||
scanned_pts = [item['scanned_pts'] for item in batch]
|
||||
scanned_n_to_1_pose_9d = [item['scanned_n_to_1_pose_9d'] for item in batch]
|
||||
rest = {}
|
||||
for key in batch[0].keys():
|
||||
if key in ['scanned_pts', 'scanned_n_to_1_pose_9d']:
|
||||
continue
|
||||
if isinstance(batch[0][key], torch.Tensor):
|
||||
rest[key] = torch.stack([item[key] for item in batch])
|
||||
elif isinstance(batch[0][key], str):
|
||||
rest[key] = [item[key] for item in batch]
|
||||
else:
|
||||
rest[key] = [item[key] for item in batch]
|
||||
return {
|
||||
'scanned_pts': scanned_pts,
|
||||
'scanned_n_to_1_pose_9d': scanned_n_to_1_pose_9d,
|
||||
**rest
|
||||
}
|
||||
return collate_fn
|
||||
|
||||
if __name__ == "__main__":
|
||||
import torch
|
||||
@@ -111,9 +128,10 @@ if __name__ == "__main__":
|
||||
config = {
|
||||
"root_dir": "C:\\Document\\Local Project\\nbv_rec\\data\\sample",
|
||||
"split_file": "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_train.txt",
|
||||
"ratio": 0.05,
|
||||
"batch_size": 1,
|
||||
"ratio": 0.5,
|
||||
"batch_size": 2,
|
||||
"num_workers": 0,
|
||||
"pts_num": 2048
|
||||
}
|
||||
ds = NBVReconstructionDataset(config)
|
||||
print(len(ds))
|
||||
@@ -126,11 +144,18 @@ if __name__ == "__main__":
|
||||
for pts in data["scanned_pts"][0]:
|
||||
#np.savetxt(f"pts_{cnt}.txt", pts)
|
||||
cnt+=1
|
||||
best_pts = data["best_pts"][0]
|
||||
#np.savetxt("best_pts.txt", best_pts)
|
||||
for key, value in data.items():
|
||||
if isinstance(value, torch.Tensor):
|
||||
print(key, ":" ,value.shape)
|
||||
else:
|
||||
print(key, ":" ,len(value))
|
||||
if key == "scanned_n_to_1_pose_9d":
|
||||
for val in value:
|
||||
print(val.shape)
|
||||
if key == "scanned_pts":
|
||||
for val in value:
|
||||
print(val.shape)
|
||||
|
||||
|
||||
print()
|
@@ -17,6 +17,9 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
# ----- Debug Trace ----- #
|
||||
import ipdb; ipdb.set_trace()
|
||||
# ------------------------ #
|
||||
if mode == namespace.Mode.TRAIN:
|
||||
return self.forward_train(data)
|
||||
elif mode == namespace.Mode.TEST:
|
||||
|
Reference in New Issue
Block a user