add data_splitor, modify dataset and encoder
This commit is contained in:
@@ -7,12 +7,13 @@ class PoseEncoder(nn.Module):
|
||||
super(PoseEncoder, self).__init__()
|
||||
self.config = config
|
||||
pose_dim = config["pose_dim"]
|
||||
out_dim = config["out_dim"]
|
||||
self.act = nn.ReLU(True)
|
||||
|
||||
self.pose_encoder = nn.Sequential(
|
||||
nn.Linear(pose_dim, 256),
|
||||
nn.Linear(pose_dim, out_dim),
|
||||
self.act,
|
||||
nn.Linear(256, 256),
|
||||
nn.Linear(out_dim, out_dim),
|
||||
self.act,
|
||||
)
|
||||
|
||||
|
@@ -1,62 +1,78 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
|
||||
|
||||
@stereotype.module("transformer_seq_encoder")
|
||||
class TransformerSequenceEncoder(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(TransformerSequenceEncoder, self).__init__()
|
||||
self.config = config
|
||||
embed_dim = config['pts_embed_dim'] + config['pose_embed_dim']
|
||||
self.positional_encoding = nn.Parameter(torch.zeros(1, config['max_seq_len'], embed_dim))
|
||||
encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=config['num_heads'], dim_feedforward=config['ffn_dim'])
|
||||
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=config['num_layers'])
|
||||
self.fc = nn.Linear(embed_dim, config['output_dim'])
|
||||
embed_dim = config["pts_embed_dim"] + config["pose_embed_dim"]
|
||||
encoder_layer = nn.TransformerEncoderLayer(
|
||||
d_model=embed_dim,
|
||||
nhead=config["num_heads"],
|
||||
dim_feedforward=config["ffn_dim"],
|
||||
batch_first=True,
|
||||
)
|
||||
self.transformer_encoder = nn.TransformerEncoder(
|
||||
encoder_layer, num_layers=config["num_layers"]
|
||||
)
|
||||
self.fc = nn.Linear(embed_dim, config["output_dim"])
|
||||
|
||||
def encode_sequence(self, pts_embedding_list_batch, pose_embedding_list_batch):
|
||||
batch_size = len(pts_embedding_list_batch)
|
||||
# Combine features and pad sequences
|
||||
combined_features_batch = []
|
||||
|
||||
for i in range(batch_size):
|
||||
combined_features = [torch.cat((pts_embed, pose_embed), dim=-1)
|
||||
for pts_embed, pose_embed in zip(pts_embedding_list_batch[i][:-1], pose_embedding_list_batch[i][:-1])]
|
||||
combined_features_batch.append(torch.stack(combined_features))
|
||||
|
||||
combined_tensor = torch.stack(combined_features_batch) # Shape: [batch_size, seq_len-1, embed_dim]
|
||||
|
||||
# Adjust positional encoding to match batch size
|
||||
pos_encoding = self.positional_encoding[:, :combined_tensor.size(1), :].repeat(batch_size, 1, 1)
|
||||
combined_tensor = combined_tensor + pos_encoding
|
||||
lengths = []
|
||||
|
||||
for pts_embedding_list, pose_embedding_list in zip(pts_embedding_list_batch, pose_embedding_list_batch):
|
||||
combined_features = [
|
||||
torch.cat((pts_embed, pose_embed), dim=-1)
|
||||
for pts_embed, pose_embed in zip(pts_embedding_list, pose_embedding_list)
|
||||
]
|
||||
combined_features_batch.append(torch.stack(combined_features))
|
||||
lengths.append(len(combined_features))
|
||||
|
||||
combined_tensor = pad_sequence(combined_features_batch, batch_first=True) # Shape: [batch_size, max_seq_len, embed_dim]
|
||||
|
||||
# Prepare mask for padding
|
||||
max_len = max(lengths)
|
||||
padding_mask = torch.tensor([([0] * length + [1] * (max_len - length)) for length in lengths], dtype=torch.bool)
|
||||
# Transformer encoding
|
||||
transformer_output = self.transformer_encoder(combined_tensor)
|
||||
|
||||
transformer_output = self.transformer_encoder(combined_tensor, src_key_padding_mask=padding_mask)
|
||||
|
||||
# Mean pooling
|
||||
final_feature = transformer_output.mean(dim=1)
|
||||
|
||||
|
||||
# Fully connected layer
|
||||
final_output = self.fc(final_feature)
|
||||
|
||||
|
||||
return final_output
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
config = {
|
||||
'pts_embed_dim': 1024, # 每个点云embedding的维度
|
||||
'pose_embed_dim': 256, # 每个姿态embedding的维度
|
||||
'num_heads': 4, # 多头注意力机制的头数
|
||||
'ffn_dim': 256, # 前馈神经网络的维度
|
||||
'num_layers': 3, # Transformer 编码层数
|
||||
'max_seq_len': 10, # 最大序列长度
|
||||
'output_dim': 2048, # 输出特征维度
|
||||
"pts_embed_dim": 1024,
|
||||
"pose_embed_dim": 256,
|
||||
"num_heads": 4,
|
||||
"ffn_dim": 256,
|
||||
"num_layers": 3,
|
||||
"output_dim": 2048,
|
||||
}
|
||||
|
||||
encoder = TransformerSequenceEncoder(config)
|
||||
seq_len = 5
|
||||
seq_len = [5, 8, 9, 4]
|
||||
batch_size = 4
|
||||
|
||||
pts_embedding_list_batch = [torch.randn(seq_len, config['pts_embed_dim']) for _ in range(batch_size)]
|
||||
pose_embedding_list_batch = [torch.randn(seq_len, config['pose_embed_dim']) for _ in range(batch_size)]
|
||||
output_feature = encoder.encode_sequence(pts_embedding_list_batch, pose_embedding_list_batch)
|
||||
|
||||
pts_embedding_list_batch = [
|
||||
torch.randn(seq_len[idx], config["pts_embed_dim"]) for idx in range(batch_size)
|
||||
]
|
||||
pose_embedding_list_batch = [
|
||||
torch.randn(seq_len[idx], config["pose_embed_dim"]) for idx in range(batch_size)
|
||||
]
|
||||
output_feature = encoder.encode_sequence(
|
||||
pts_embedding_list_batch, pose_embedding_list_batch
|
||||
)
|
||||
print("Encoded Feature:", output_feature)
|
||||
print("Feature Shape:", output_feature.shape)
|
||||
|
Reference in New Issue
Block a user