add data_splitor, modify dataset and encoder

This commit is contained in:
hofee
2024-09-04 23:38:30 +08:00
parent e0fb9a7617
commit 129bcb872e
7 changed files with 148 additions and 50 deletions

View File

@@ -7,12 +7,13 @@ class PoseEncoder(nn.Module):
super(PoseEncoder, self).__init__()
self.config = config
pose_dim = config["pose_dim"]
out_dim = config["out_dim"]
self.act = nn.ReLU(True)
self.pose_encoder = nn.Sequential(
nn.Linear(pose_dim, 256),
nn.Linear(pose_dim, out_dim),
self.act,
nn.Linear(256, 256),
nn.Linear(out_dim, out_dim),
self.act,
)

View File

@@ -1,62 +1,78 @@
import torch
from torch import nn
from torch.nn.utils.rnn import pad_sequence
import PytorchBoot.stereotype as stereotype
@stereotype.module("transformer_seq_encoder")
class TransformerSequenceEncoder(nn.Module):
def __init__(self, config):
super(TransformerSequenceEncoder, self).__init__()
self.config = config
embed_dim = config['pts_embed_dim'] + config['pose_embed_dim']
self.positional_encoding = nn.Parameter(torch.zeros(1, config['max_seq_len'], embed_dim))
encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=config['num_heads'], dim_feedforward=config['ffn_dim'])
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=config['num_layers'])
self.fc = nn.Linear(embed_dim, config['output_dim'])
embed_dim = config["pts_embed_dim"] + config["pose_embed_dim"]
encoder_layer = nn.TransformerEncoderLayer(
d_model=embed_dim,
nhead=config["num_heads"],
dim_feedforward=config["ffn_dim"],
batch_first=True,
)
self.transformer_encoder = nn.TransformerEncoder(
encoder_layer, num_layers=config["num_layers"]
)
self.fc = nn.Linear(embed_dim, config["output_dim"])
def encode_sequence(self, pts_embedding_list_batch, pose_embedding_list_batch):
batch_size = len(pts_embedding_list_batch)
# Combine features and pad sequences
combined_features_batch = []
for i in range(batch_size):
combined_features = [torch.cat((pts_embed, pose_embed), dim=-1)
for pts_embed, pose_embed in zip(pts_embedding_list_batch[i][:-1], pose_embedding_list_batch[i][:-1])]
combined_features_batch.append(torch.stack(combined_features))
combined_tensor = torch.stack(combined_features_batch) # Shape: [batch_size, seq_len-1, embed_dim]
# Adjust positional encoding to match batch size
pos_encoding = self.positional_encoding[:, :combined_tensor.size(1), :].repeat(batch_size, 1, 1)
combined_tensor = combined_tensor + pos_encoding
lengths = []
for pts_embedding_list, pose_embedding_list in zip(pts_embedding_list_batch, pose_embedding_list_batch):
combined_features = [
torch.cat((pts_embed, pose_embed), dim=-1)
for pts_embed, pose_embed in zip(pts_embedding_list, pose_embedding_list)
]
combined_features_batch.append(torch.stack(combined_features))
lengths.append(len(combined_features))
combined_tensor = pad_sequence(combined_features_batch, batch_first=True) # Shape: [batch_size, max_seq_len, embed_dim]
# Prepare mask for padding
max_len = max(lengths)
padding_mask = torch.tensor([([0] * length + [1] * (max_len - length)) for length in lengths], dtype=torch.bool)
# Transformer encoding
transformer_output = self.transformer_encoder(combined_tensor)
transformer_output = self.transformer_encoder(combined_tensor, src_key_padding_mask=padding_mask)
# Mean pooling
final_feature = transformer_output.mean(dim=1)
# Fully connected layer
final_output = self.fc(final_feature)
return final_output
if __name__ == "__main__":
config = {
'pts_embed_dim': 1024, # 每个点云embedding的维度
'pose_embed_dim': 256, # 每个姿态embedding的维度
'num_heads': 4, # 多头注意力机制的头数
'ffn_dim': 256, # 前馈神经网络的维度
'num_layers': 3, # Transformer 编码层数
'max_seq_len': 10, # 最大序列长度
'output_dim': 2048, # 输出特征维度
"pts_embed_dim": 1024,
"pose_embed_dim": 256,
"num_heads": 4,
"ffn_dim": 256,
"num_layers": 3,
"output_dim": 2048,
}
encoder = TransformerSequenceEncoder(config)
seq_len = 5
seq_len = [5, 8, 9, 4]
batch_size = 4
pts_embedding_list_batch = [torch.randn(seq_len, config['pts_embed_dim']) for _ in range(batch_size)]
pose_embedding_list_batch = [torch.randn(seq_len, config['pose_embed_dim']) for _ in range(batch_size)]
output_feature = encoder.encode_sequence(pts_embedding_list_batch, pose_embedding_list_batch)
pts_embedding_list_batch = [
torch.randn(seq_len[idx], config["pts_embed_dim"]) for idx in range(batch_size)
]
pose_embedding_list_batch = [
torch.randn(seq_len[idx], config["pose_embed_dim"]) for idx in range(batch_size)
]
output_feature = encoder.encode_sequence(
pts_embedding_list_batch, pose_embedding_list_batch
)
print("Encoded Feature:", output_feature)
print("Feature Shape:", output_feature.shape)