add data_splitor, modify dataset and encoder
This commit is contained in:
parent
e0fb9a7617
commit
129bcb872e
@ -1,9 +1,9 @@
|
|||||||
from PytorchBoot.application import PytorchBootApplication
|
from PytorchBoot.application import PytorchBootApplication
|
||||||
from runners.data_splitor import DataSplitor
|
from runners.data_spliter import DataSpliter
|
||||||
|
|
||||||
@PytorchBootApplication("split")
|
@PytorchBootApplication("split")
|
||||||
class DataSplitApp:
|
class DataSplitApp:
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def start():
|
def start():
|
||||||
DataSplitor(r"configs\split_dataset_config.yaml").run()
|
DataSpliter(r"configs\split_dataset_config.yaml").run()
|
||||||
|
|
@ -8,17 +8,70 @@ runner:
|
|||||||
experiment:
|
experiment:
|
||||||
name: debug
|
name: debug
|
||||||
root_dir: "experiments"
|
root_dir: "experiments"
|
||||||
|
use_checkpoint: False
|
||||||
|
epoch: -1 # -1 stands for last epoch
|
||||||
|
max_epochs: 5
|
||||||
|
save_checkpoint_interval: 1
|
||||||
|
test_first: False
|
||||||
|
|
||||||
train:
|
train:
|
||||||
|
optimizer:
|
||||||
|
type: Adam
|
||||||
|
lr: 0.0001
|
||||||
|
losses:
|
||||||
|
- mse_loss
|
||||||
|
dataset: OmniObject3d_train
|
||||||
|
test:
|
||||||
|
frequency: 3 # test frequency
|
||||||
dataset_list:
|
dataset_list:
|
||||||
- OmniObject3d_train
|
- OmniObject3d_train
|
||||||
|
|
||||||
|
pipeline: nbv_reconstruction_pipeline
|
||||||
|
|
||||||
datasets:
|
datasets:
|
||||||
OmniObject3d_train:
|
OmniObject3d_train:
|
||||||
root_dir: "C:\\Document\\Local Project\\nbv_rec\\data\\sample"
|
root_dir: "C:\\Document\\Local Project\\nbv_rec\\data\\sample"
|
||||||
split_file: "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_train.txt"
|
split_file: "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_train.txt"
|
||||||
|
ratio: 1.0
|
||||||
|
batch_size: 1
|
||||||
|
num_workers: 12
|
||||||
|
pts_num: 2048
|
||||||
|
|
||||||
OmniObject3d_test:
|
OmniObject3d_test:
|
||||||
root_dir: "C:\\Document\\Local Project\\nbv_rec\\data\\sample"
|
root_dir: "C:\\Document\\Local Project\\nbv_rec\\data\\sample"
|
||||||
split_file: "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_test.txt"
|
split_file: "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_test.txt"
|
||||||
|
eval_list:
|
||||||
|
- pose_diff
|
||||||
|
ratio: 1.0
|
||||||
|
batch_size: 1
|
||||||
|
num_workers: 1
|
||||||
|
pts_num: 2048
|
||||||
|
|
||||||
|
module:
|
||||||
|
|
||||||
|
pointnet_encoder:
|
||||||
|
in_dim: 3
|
||||||
|
out_dim: 1024
|
||||||
|
global_feat: True
|
||||||
|
feature_transform: False
|
||||||
|
|
||||||
|
transformer_seq_encoder:
|
||||||
|
pts_embed_dim: 1024
|
||||||
|
pose_embed_dim: 256
|
||||||
|
num_heads: 4
|
||||||
|
ffn_dim: 256
|
||||||
|
num_layers: 3
|
||||||
|
max_seq_len: 30
|
||||||
|
output_dim: 2048
|
||||||
|
|
||||||
|
gf_view_finder:
|
||||||
|
regression_head: Rx_Ry_and_T
|
||||||
|
pose_mode: rot_matrix
|
||||||
|
per_point_feature: False
|
||||||
|
sample_mode: ode
|
||||||
|
sampling_steps: 500
|
||||||
|
sde_mode: ve
|
||||||
|
|
||||||
|
pose_encoder:
|
||||||
|
pose_dim: 9
|
||||||
|
output_dim: 256
|
@ -1,6 +1,7 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from PytorchBoot.dataset import BaseDataset
|
from PytorchBoot.dataset import BaseDataset
|
||||||
import PytorchBoot.stereotype as stereotype
|
import PytorchBoot.stereotype as stereotype
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
|
|
||||||
import sys
|
import sys
|
||||||
sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction")
|
sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction")
|
||||||
@ -18,7 +19,7 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
self.split_file_path = config["split_file"]
|
self.split_file_path = config["split_file"]
|
||||||
self.scene_name_list = self.load_scene_name_list()
|
self.scene_name_list = self.load_scene_name_list()
|
||||||
self.datalist = self.get_datalist()
|
self.datalist = self.get_datalist()
|
||||||
self.pts_num = 1024
|
self.pts_num = config["pts_num"]
|
||||||
|
|
||||||
def load_scene_name_list(self):
|
def load_scene_name_list(self):
|
||||||
scene_name_list = []
|
scene_name_list = []
|
||||||
@ -76,13 +77,9 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
|
|
||||||
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
||||||
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
||||||
nbv_depth = DataLoadUtil.load_depth(nbv_path)
|
|
||||||
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
||||||
nbv_mask = DataLoadUtil.load_seg(nbv_path)
|
|
||||||
best_frame_to_world = cam_info["cam_to_world"]
|
best_frame_to_world = cam_info["cam_to_world"]
|
||||||
best_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), best_frame_to_world)
|
best_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), best_frame_to_world)
|
||||||
best_target_point_cloud = DataLoadUtil.get_target_point_cloud(nbv_depth, cam_info["cam_intrinsic"], best_to_1_pose, nbv_mask)["points_world"]
|
|
||||||
downsampled_best_target_point_cloud = PtsUtil.random_downsample_point_cloud(best_target_point_cloud, self.pts_num)
|
|
||||||
best_to_1_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(best_to_1_pose[:3,:3]))
|
best_to_1_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(best_to_1_pose[:3,:3]))
|
||||||
best_to_1_trans = best_to_1_pose[:3,3]
|
best_to_1_trans = best_to_1_pose[:3,3]
|
||||||
best_to_1_9d = np.concatenate([best_to_1_6d, best_to_1_trans], axis=0)
|
best_to_1_9d = np.concatenate([best_to_1_6d, best_to_1_trans], axis=0)
|
||||||
@ -91,7 +88,6 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
"scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32),
|
"scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32),
|
||||||
"scanned_coverage_rate": np.asarray(scanned_coverages_rate,dtype=np.float32),
|
"scanned_coverage_rate": np.asarray(scanned_coverages_rate,dtype=np.float32),
|
||||||
"scanned_n_to_1_pose_9d": np.asarray(scanned_n_to_1_pose,dtype=np.float32),
|
"scanned_n_to_1_pose_9d": np.asarray(scanned_n_to_1_pose,dtype=np.float32),
|
||||||
"best_pts": np.asarray(downsampled_best_target_point_cloud,dtype=np.float32),
|
|
||||||
"best_coverage_rate": nbv_coverage_rate,
|
"best_coverage_rate": nbv_coverage_rate,
|
||||||
"best_to_1_pose_9d": best_to_1_9d,
|
"best_to_1_pose_9d": best_to_1_9d,
|
||||||
"max_coverage_rate": max_coverage_rate,
|
"max_coverage_rate": max_coverage_rate,
|
||||||
@ -103,6 +99,27 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.datalist)
|
return len(self.datalist)
|
||||||
|
|
||||||
|
def get_collate_fn(self):
|
||||||
|
def collate_fn(batch):
|
||||||
|
scanned_pts = [item['scanned_pts'] for item in batch]
|
||||||
|
scanned_n_to_1_pose_9d = [item['scanned_n_to_1_pose_9d'] for item in batch]
|
||||||
|
rest = {}
|
||||||
|
for key in batch[0].keys():
|
||||||
|
if key in ['scanned_pts', 'scanned_n_to_1_pose_9d']:
|
||||||
|
continue
|
||||||
|
if isinstance(batch[0][key], torch.Tensor):
|
||||||
|
rest[key] = torch.stack([item[key] for item in batch])
|
||||||
|
elif isinstance(batch[0][key], str):
|
||||||
|
rest[key] = [item[key] for item in batch]
|
||||||
|
else:
|
||||||
|
rest[key] = [item[key] for item in batch]
|
||||||
|
return {
|
||||||
|
'scanned_pts': scanned_pts,
|
||||||
|
'scanned_n_to_1_pose_9d': scanned_n_to_1_pose_9d,
|
||||||
|
**rest
|
||||||
|
}
|
||||||
|
return collate_fn
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
import torch
|
import torch
|
||||||
seed = 0
|
seed = 0
|
||||||
@ -111,9 +128,10 @@ if __name__ == "__main__":
|
|||||||
config = {
|
config = {
|
||||||
"root_dir": "C:\\Document\\Local Project\\nbv_rec\\data\\sample",
|
"root_dir": "C:\\Document\\Local Project\\nbv_rec\\data\\sample",
|
||||||
"split_file": "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_train.txt",
|
"split_file": "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_train.txt",
|
||||||
"ratio": 0.05,
|
"ratio": 0.5,
|
||||||
"batch_size": 1,
|
"batch_size": 2,
|
||||||
"num_workers": 0,
|
"num_workers": 0,
|
||||||
|
"pts_num": 2048
|
||||||
}
|
}
|
||||||
ds = NBVReconstructionDataset(config)
|
ds = NBVReconstructionDataset(config)
|
||||||
print(len(ds))
|
print(len(ds))
|
||||||
@ -126,11 +144,18 @@ if __name__ == "__main__":
|
|||||||
for pts in data["scanned_pts"][0]:
|
for pts in data["scanned_pts"][0]:
|
||||||
#np.savetxt(f"pts_{cnt}.txt", pts)
|
#np.savetxt(f"pts_{cnt}.txt", pts)
|
||||||
cnt+=1
|
cnt+=1
|
||||||
best_pts = data["best_pts"][0]
|
|
||||||
#np.savetxt("best_pts.txt", best_pts)
|
#np.savetxt("best_pts.txt", best_pts)
|
||||||
for key, value in data.items():
|
for key, value in data.items():
|
||||||
if isinstance(value, torch.Tensor):
|
if isinstance(value, torch.Tensor):
|
||||||
print(key, ":" ,value.shape)
|
print(key, ":" ,value.shape)
|
||||||
|
else:
|
||||||
|
print(key, ":" ,len(value))
|
||||||
|
if key == "scanned_n_to_1_pose_9d":
|
||||||
|
for val in value:
|
||||||
|
print(val.shape)
|
||||||
|
if key == "scanned_pts":
|
||||||
|
for val in value:
|
||||||
|
print(val.shape)
|
||||||
|
|
||||||
|
|
||||||
print()
|
print()
|
@ -17,6 +17,9 @@ class NBVReconstructionPipeline(nn.Module):
|
|||||||
|
|
||||||
def forward(self, data):
|
def forward(self, data):
|
||||||
mode = data["mode"]
|
mode = data["mode"]
|
||||||
|
# ----- Debug Trace ----- #
|
||||||
|
import ipdb; ipdb.set_trace()
|
||||||
|
# ------------------------ #
|
||||||
if mode == namespace.Mode.TRAIN:
|
if mode == namespace.Mode.TRAIN:
|
||||||
return self.forward_train(data)
|
return self.forward_train(data)
|
||||||
elif mode == namespace.Mode.TEST:
|
elif mode == namespace.Mode.TEST:
|
||||||
|
@ -7,12 +7,13 @@ class PoseEncoder(nn.Module):
|
|||||||
super(PoseEncoder, self).__init__()
|
super(PoseEncoder, self).__init__()
|
||||||
self.config = config
|
self.config = config
|
||||||
pose_dim = config["pose_dim"]
|
pose_dim = config["pose_dim"]
|
||||||
|
out_dim = config["out_dim"]
|
||||||
self.act = nn.ReLU(True)
|
self.act = nn.ReLU(True)
|
||||||
|
|
||||||
self.pose_encoder = nn.Sequential(
|
self.pose_encoder = nn.Sequential(
|
||||||
nn.Linear(pose_dim, 256),
|
nn.Linear(pose_dim, out_dim),
|
||||||
self.act,
|
self.act,
|
||||||
nn.Linear(256, 256),
|
nn.Linear(out_dim, out_dim),
|
||||||
self.act,
|
self.act,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -1,36 +1,46 @@
|
|||||||
import torch
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
|
from torch.nn.utils.rnn import pad_sequence
|
||||||
import PytorchBoot.stereotype as stereotype
|
import PytorchBoot.stereotype as stereotype
|
||||||
|
|
||||||
|
|
||||||
@stereotype.module("transformer_seq_encoder")
|
@stereotype.module("transformer_seq_encoder")
|
||||||
class TransformerSequenceEncoder(nn.Module):
|
class TransformerSequenceEncoder(nn.Module):
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super(TransformerSequenceEncoder, self).__init__()
|
super(TransformerSequenceEncoder, self).__init__()
|
||||||
self.config = config
|
self.config = config
|
||||||
embed_dim = config['pts_embed_dim'] + config['pose_embed_dim']
|
embed_dim = config["pts_embed_dim"] + config["pose_embed_dim"]
|
||||||
self.positional_encoding = nn.Parameter(torch.zeros(1, config['max_seq_len'], embed_dim))
|
encoder_layer = nn.TransformerEncoderLayer(
|
||||||
encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=config['num_heads'], dim_feedforward=config['ffn_dim'])
|
d_model=embed_dim,
|
||||||
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=config['num_layers'])
|
nhead=config["num_heads"],
|
||||||
self.fc = nn.Linear(embed_dim, config['output_dim'])
|
dim_feedforward=config["ffn_dim"],
|
||||||
|
batch_first=True,
|
||||||
|
)
|
||||||
|
self.transformer_encoder = nn.TransformerEncoder(
|
||||||
|
encoder_layer, num_layers=config["num_layers"]
|
||||||
|
)
|
||||||
|
self.fc = nn.Linear(embed_dim, config["output_dim"])
|
||||||
|
|
||||||
def encode_sequence(self, pts_embedding_list_batch, pose_embedding_list_batch):
|
def encode_sequence(self, pts_embedding_list_batch, pose_embedding_list_batch):
|
||||||
batch_size = len(pts_embedding_list_batch)
|
# Combine features and pad sequences
|
||||||
combined_features_batch = []
|
combined_features_batch = []
|
||||||
|
lengths = []
|
||||||
|
|
||||||
for i in range(batch_size):
|
for pts_embedding_list, pose_embedding_list in zip(pts_embedding_list_batch, pose_embedding_list_batch):
|
||||||
combined_features = [torch.cat((pts_embed, pose_embed), dim=-1)
|
combined_features = [
|
||||||
for pts_embed, pose_embed in zip(pts_embedding_list_batch[i][:-1], pose_embedding_list_batch[i][:-1])]
|
torch.cat((pts_embed, pose_embed), dim=-1)
|
||||||
|
for pts_embed, pose_embed in zip(pts_embedding_list, pose_embedding_list)
|
||||||
|
]
|
||||||
combined_features_batch.append(torch.stack(combined_features))
|
combined_features_batch.append(torch.stack(combined_features))
|
||||||
|
lengths.append(len(combined_features))
|
||||||
|
|
||||||
combined_tensor = torch.stack(combined_features_batch) # Shape: [batch_size, seq_len-1, embed_dim]
|
combined_tensor = pad_sequence(combined_features_batch, batch_first=True) # Shape: [batch_size, max_seq_len, embed_dim]
|
||||||
|
|
||||||
# Adjust positional encoding to match batch size
|
|
||||||
pos_encoding = self.positional_encoding[:, :combined_tensor.size(1), :].repeat(batch_size, 1, 1)
|
|
||||||
combined_tensor = combined_tensor + pos_encoding
|
|
||||||
|
|
||||||
|
# Prepare mask for padding
|
||||||
|
max_len = max(lengths)
|
||||||
|
padding_mask = torch.tensor([([0] * length + [1] * (max_len - length)) for length in lengths], dtype=torch.bool)
|
||||||
# Transformer encoding
|
# Transformer encoding
|
||||||
transformer_output = self.transformer_encoder(combined_tensor)
|
transformer_output = self.transformer_encoder(combined_tensor, src_key_padding_mask=padding_mask)
|
||||||
|
|
||||||
# Mean pooling
|
# Mean pooling
|
||||||
final_feature = transformer_output.mean(dim=1)
|
final_feature = transformer_output.mean(dim=1)
|
||||||
@ -40,23 +50,29 @@ class TransformerSequenceEncoder(nn.Module):
|
|||||||
|
|
||||||
return final_output
|
return final_output
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
config = {
|
config = {
|
||||||
'pts_embed_dim': 1024, # 每个点云embedding的维度
|
"pts_embed_dim": 1024,
|
||||||
'pose_embed_dim': 256, # 每个姿态embedding的维度
|
"pose_embed_dim": 256,
|
||||||
'num_heads': 4, # 多头注意力机制的头数
|
"num_heads": 4,
|
||||||
'ffn_dim': 256, # 前馈神经网络的维度
|
"ffn_dim": 256,
|
||||||
'num_layers': 3, # Transformer 编码层数
|
"num_layers": 3,
|
||||||
'max_seq_len': 10, # 最大序列长度
|
"output_dim": 2048,
|
||||||
'output_dim': 2048, # 输出特征维度
|
|
||||||
}
|
}
|
||||||
|
|
||||||
encoder = TransformerSequenceEncoder(config)
|
encoder = TransformerSequenceEncoder(config)
|
||||||
seq_len = 5
|
seq_len = [5, 8, 9, 4]
|
||||||
batch_size = 4
|
batch_size = 4
|
||||||
|
|
||||||
pts_embedding_list_batch = [torch.randn(seq_len, config['pts_embed_dim']) for _ in range(batch_size)]
|
pts_embedding_list_batch = [
|
||||||
pose_embedding_list_batch = [torch.randn(seq_len, config['pose_embed_dim']) for _ in range(batch_size)]
|
torch.randn(seq_len[idx], config["pts_embed_dim"]) for idx in range(batch_size)
|
||||||
output_feature = encoder.encode_sequence(pts_embedding_list_batch, pose_embedding_list_batch)
|
]
|
||||||
|
pose_embedding_list_batch = [
|
||||||
|
torch.randn(seq_len[idx], config["pose_embed_dim"]) for idx in range(batch_size)
|
||||||
|
]
|
||||||
|
output_feature = encoder.encode_sequence(
|
||||||
|
pts_embedding_list_batch, pose_embedding_list_batch
|
||||||
|
)
|
||||||
print("Encoded Feature:", output_feature)
|
print("Encoded Feature:", output_feature)
|
||||||
print("Feature Shape:", output_feature.shape)
|
print("Feature Shape:", output_feature.shape)
|
||||||
|
@ -6,8 +6,8 @@ from PytorchBoot.utils import Log
|
|||||||
import PytorchBoot.stereotype as stereotype
|
import PytorchBoot.stereotype as stereotype
|
||||||
from PytorchBoot.status import status_manager
|
from PytorchBoot.status import status_manager
|
||||||
|
|
||||||
@stereotype.runner("data_splitor")
|
@stereotype.runner("data_spliter")
|
||||||
class DataSplitor(Runner):
|
class DataSpliter(Runner):
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super().__init__(config)
|
super().__init__(config)
|
||||||
self.load_experiment("data_split")
|
self.load_experiment("data_split")
|
Loading…
x
Reference in New Issue
Block a user