add data_splitor, modify dataset and encoder

This commit is contained in:
hofee 2024-09-04 23:38:30 +08:00
parent e0fb9a7617
commit 129bcb872e
7 changed files with 148 additions and 50 deletions

View File

@ -1,9 +1,9 @@
from PytorchBoot.application import PytorchBootApplication
from runners.data_splitor import DataSplitor
from runners.data_spliter import DataSpliter
@PytorchBootApplication("split")
class DataSplitApp:
@staticmethod
def start():
DataSplitor(r"configs\split_dataset_config.yaml").run()
DataSpliter(r"configs\split_dataset_config.yaml").run()

View File

@ -8,17 +8,70 @@ runner:
experiment:
name: debug
root_dir: "experiments"
use_checkpoint: False
epoch: -1 # -1 stands for last epoch
max_epochs: 5
save_checkpoint_interval: 1
test_first: False
train:
optimizer:
type: Adam
lr: 0.0001
losses:
- mse_loss
dataset: OmniObject3d_train
test:
frequency: 3 # test frequency
dataset_list:
- OmniObject3d_train
pipeline: nbv_reconstruction_pipeline
datasets:
OmniObject3d_train:
root_dir: "C:\\Document\\Local Project\\nbv_rec\\data\\sample"
split_file: "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_train.txt"
ratio: 1.0
batch_size: 1
num_workers: 12
pts_num: 2048
OmniObject3d_test:
root_dir: "C:\\Document\\Local Project\\nbv_rec\\data\\sample"
split_file: "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_test.txt"
eval_list:
- pose_diff
ratio: 1.0
batch_size: 1
num_workers: 1
pts_num: 2048
module:
pointnet_encoder:
in_dim: 3
out_dim: 1024
global_feat: True
feature_transform: False
transformer_seq_encoder:
pts_embed_dim: 1024
pose_embed_dim: 256
num_heads: 4
ffn_dim: 256
num_layers: 3
max_seq_len: 30
output_dim: 2048
gf_view_finder:
regression_head: Rx_Ry_and_T
pose_mode: rot_matrix
per_point_feature: False
sample_mode: ode
sampling_steps: 500
sde_mode: ve
pose_encoder:
pose_dim: 9
output_dim: 256

View File

@ -1,6 +1,7 @@
import numpy as np
from PytorchBoot.dataset import BaseDataset
import PytorchBoot.stereotype as stereotype
from torch.nn.utils.rnn import pad_sequence
import sys
sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction")
@ -18,7 +19,7 @@ class NBVReconstructionDataset(BaseDataset):
self.split_file_path = config["split_file"]
self.scene_name_list = self.load_scene_name_list()
self.datalist = self.get_datalist()
self.pts_num = 1024
self.pts_num = config["pts_num"]
def load_scene_name_list(self):
scene_name_list = []
@ -76,13 +77,9 @@ class NBVReconstructionDataset(BaseDataset):
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
nbv_depth = DataLoadUtil.load_depth(nbv_path)
cam_info = DataLoadUtil.load_cam_info(nbv_path)
nbv_mask = DataLoadUtil.load_seg(nbv_path)
best_frame_to_world = cam_info["cam_to_world"]
best_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), best_frame_to_world)
best_target_point_cloud = DataLoadUtil.get_target_point_cloud(nbv_depth, cam_info["cam_intrinsic"], best_to_1_pose, nbv_mask)["points_world"]
downsampled_best_target_point_cloud = PtsUtil.random_downsample_point_cloud(best_target_point_cloud, self.pts_num)
best_to_1_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(best_to_1_pose[:3,:3]))
best_to_1_trans = best_to_1_pose[:3,3]
best_to_1_9d = np.concatenate([best_to_1_6d, best_to_1_trans], axis=0)
@ -91,7 +88,6 @@ class NBVReconstructionDataset(BaseDataset):
"scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32),
"scanned_coverage_rate": np.asarray(scanned_coverages_rate,dtype=np.float32),
"scanned_n_to_1_pose_9d": np.asarray(scanned_n_to_1_pose,dtype=np.float32),
"best_pts": np.asarray(downsampled_best_target_point_cloud,dtype=np.float32),
"best_coverage_rate": nbv_coverage_rate,
"best_to_1_pose_9d": best_to_1_9d,
"max_coverage_rate": max_coverage_rate,
@ -103,6 +99,27 @@ class NBVReconstructionDataset(BaseDataset):
def __len__(self):
return len(self.datalist)
def get_collate_fn(self):
def collate_fn(batch):
scanned_pts = [item['scanned_pts'] for item in batch]
scanned_n_to_1_pose_9d = [item['scanned_n_to_1_pose_9d'] for item in batch]
rest = {}
for key in batch[0].keys():
if key in ['scanned_pts', 'scanned_n_to_1_pose_9d']:
continue
if isinstance(batch[0][key], torch.Tensor):
rest[key] = torch.stack([item[key] for item in batch])
elif isinstance(batch[0][key], str):
rest[key] = [item[key] for item in batch]
else:
rest[key] = [item[key] for item in batch]
return {
'scanned_pts': scanned_pts,
'scanned_n_to_1_pose_9d': scanned_n_to_1_pose_9d,
**rest
}
return collate_fn
if __name__ == "__main__":
import torch
seed = 0
@ -111,9 +128,10 @@ if __name__ == "__main__":
config = {
"root_dir": "C:\\Document\\Local Project\\nbv_rec\\data\\sample",
"split_file": "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_train.txt",
"ratio": 0.05,
"batch_size": 1,
"ratio": 0.5,
"batch_size": 2,
"num_workers": 0,
"pts_num": 2048
}
ds = NBVReconstructionDataset(config)
print(len(ds))
@ -126,11 +144,18 @@ if __name__ == "__main__":
for pts in data["scanned_pts"][0]:
#np.savetxt(f"pts_{cnt}.txt", pts)
cnt+=1
best_pts = data["best_pts"][0]
#np.savetxt("best_pts.txt", best_pts)
for key, value in data.items():
if isinstance(value, torch.Tensor):
print(key, ":" ,value.shape)
else:
print(key, ":" ,len(value))
if key == "scanned_n_to_1_pose_9d":
for val in value:
print(val.shape)
if key == "scanned_pts":
for val in value:
print(val.shape)
print()

View File

@ -17,6 +17,9 @@ class NBVReconstructionPipeline(nn.Module):
def forward(self, data):
mode = data["mode"]
# ----- Debug Trace ----- #
import ipdb; ipdb.set_trace()
# ------------------------ #
if mode == namespace.Mode.TRAIN:
return self.forward_train(data)
elif mode == namespace.Mode.TEST:

View File

@ -7,12 +7,13 @@ class PoseEncoder(nn.Module):
super(PoseEncoder, self).__init__()
self.config = config
pose_dim = config["pose_dim"]
out_dim = config["out_dim"]
self.act = nn.ReLU(True)
self.pose_encoder = nn.Sequential(
nn.Linear(pose_dim, 256),
nn.Linear(pose_dim, out_dim),
self.act,
nn.Linear(256, 256),
nn.Linear(out_dim, out_dim),
self.act,
)

View File

@ -1,36 +1,46 @@
import torch
from torch import nn
from torch.nn.utils.rnn import pad_sequence
import PytorchBoot.stereotype as stereotype
@stereotype.module("transformer_seq_encoder")
class TransformerSequenceEncoder(nn.Module):
def __init__(self, config):
super(TransformerSequenceEncoder, self).__init__()
self.config = config
embed_dim = config['pts_embed_dim'] + config['pose_embed_dim']
self.positional_encoding = nn.Parameter(torch.zeros(1, config['max_seq_len'], embed_dim))
encoder_layer = nn.TransformerEncoderLayer(d_model=embed_dim, nhead=config['num_heads'], dim_feedforward=config['ffn_dim'])
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=config['num_layers'])
self.fc = nn.Linear(embed_dim, config['output_dim'])
embed_dim = config["pts_embed_dim"] + config["pose_embed_dim"]
encoder_layer = nn.TransformerEncoderLayer(
d_model=embed_dim,
nhead=config["num_heads"],
dim_feedforward=config["ffn_dim"],
batch_first=True,
)
self.transformer_encoder = nn.TransformerEncoder(
encoder_layer, num_layers=config["num_layers"]
)
self.fc = nn.Linear(embed_dim, config["output_dim"])
def encode_sequence(self, pts_embedding_list_batch, pose_embedding_list_batch):
batch_size = len(pts_embedding_list_batch)
# Combine features and pad sequences
combined_features_batch = []
lengths = []
for i in range(batch_size):
combined_features = [torch.cat((pts_embed, pose_embed), dim=-1)
for pts_embed, pose_embed in zip(pts_embedding_list_batch[i][:-1], pose_embedding_list_batch[i][:-1])]
for pts_embedding_list, pose_embedding_list in zip(pts_embedding_list_batch, pose_embedding_list_batch):
combined_features = [
torch.cat((pts_embed, pose_embed), dim=-1)
for pts_embed, pose_embed in zip(pts_embedding_list, pose_embedding_list)
]
combined_features_batch.append(torch.stack(combined_features))
lengths.append(len(combined_features))
combined_tensor = torch.stack(combined_features_batch) # Shape: [batch_size, seq_len-1, embed_dim]
# Adjust positional encoding to match batch size
pos_encoding = self.positional_encoding[:, :combined_tensor.size(1), :].repeat(batch_size, 1, 1)
combined_tensor = combined_tensor + pos_encoding
combined_tensor = pad_sequence(combined_features_batch, batch_first=True) # Shape: [batch_size, max_seq_len, embed_dim]
# Prepare mask for padding
max_len = max(lengths)
padding_mask = torch.tensor([([0] * length + [1] * (max_len - length)) for length in lengths], dtype=torch.bool)
# Transformer encoding
transformer_output = self.transformer_encoder(combined_tensor)
transformer_output = self.transformer_encoder(combined_tensor, src_key_padding_mask=padding_mask)
# Mean pooling
final_feature = transformer_output.mean(dim=1)
@ -40,23 +50,29 @@ class TransformerSequenceEncoder(nn.Module):
return final_output
if __name__ == "__main__":
config = {
'pts_embed_dim': 1024, # 每个点云embedding的维度
'pose_embed_dim': 256, # 每个姿态embedding的维度
'num_heads': 4, # 多头注意力机制的头数
'ffn_dim': 256, # 前馈神经网络的维度
'num_layers': 3, # Transformer 编码层数
'max_seq_len': 10, # 最大序列长度
'output_dim': 2048, # 输出特征维度
"pts_embed_dim": 1024,
"pose_embed_dim": 256,
"num_heads": 4,
"ffn_dim": 256,
"num_layers": 3,
"output_dim": 2048,
}
encoder = TransformerSequenceEncoder(config)
seq_len = 5
seq_len = [5, 8, 9, 4]
batch_size = 4
pts_embedding_list_batch = [torch.randn(seq_len, config['pts_embed_dim']) for _ in range(batch_size)]
pose_embedding_list_batch = [torch.randn(seq_len, config['pose_embed_dim']) for _ in range(batch_size)]
output_feature = encoder.encode_sequence(pts_embedding_list_batch, pose_embedding_list_batch)
pts_embedding_list_batch = [
torch.randn(seq_len[idx], config["pts_embed_dim"]) for idx in range(batch_size)
]
pose_embedding_list_batch = [
torch.randn(seq_len[idx], config["pose_embed_dim"]) for idx in range(batch_size)
]
output_feature = encoder.encode_sequence(
pts_embedding_list_batch, pose_embedding_list_batch
)
print("Encoded Feature:", output_feature)
print("Feature Shape:", output_feature.shape)

View File

@ -6,8 +6,8 @@ from PytorchBoot.utils import Log
import PytorchBoot.stereotype as stereotype
from PytorchBoot.status import status_manager
@stereotype.runner("data_splitor")
class DataSplitor(Runner):
@stereotype.runner("data_spliter")
class DataSpliter(Runner):
def __init__(self, config):
super().__init__(config)
self.load_experiment("data_split")