add pose_n_num_encoder

This commit is contained in:
hofee 2024-09-29 18:37:03 +08:00
parent 99e57c3f4c
commit 2753f114a3
4 changed files with 193 additions and 1 deletions

View File

@ -0,0 +1,100 @@
import torch
from torch import nn
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory.component_factory import ComponentFactory
from PytorchBoot.utils import Log
@stereotype.pipeline("nbv_reconstruction_global_pts_n_num_pipeline")
class NBVReconstructionGlobalPointsPipeline(nn.Module):
def __init__(self, config):
super(NBVReconstructionGlobalPointsPipeline, self).__init__()
self.config = config
self.module_config = config["modules"]
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
self.pose_n_num_seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_n_num_seq_encoder"])
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
self.pts_num_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_num_encoder"])
self.eps = float(self.config["eps"])
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
def forward(self, data):
mode = data["mode"]
if mode == namespace.Mode.TRAIN:
return self.forward_train(data)
elif mode == namespace.Mode.TEST:
return self.forward_test(data)
else:
Log.error("Unknown mode: {}".format(mode), True)
def pertube_data(self, gt_delta_9d):
bs = gt_delta_9d.shape[0]
random_t = torch.rand(bs, device=gt_delta_9d.device) * (1. - self.eps) + self.eps
random_t = random_t.unsqueeze(-1)
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
std = std.view(-1, 1)
z = torch.randn_like(gt_delta_9d)
perturbed_x = mu + z * std
target_score = - z * std / (std ** 2)
return perturbed_x, random_t, target_score, std
def forward_train(self, data):
main_feat = self.get_main_feat(data)
''' get std '''
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
input_data = {
"sampled_pose": perturbed_x,
"t": random_t,
"main_feat": main_feat,
}
estimated_score = self.view_finder(input_data)
output = {
"estimated_score": estimated_score,
"target_score": target_score,
"std": std
}
return output
def forward_test(self,data):
main_feat = self.get_main_feat(data)
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(main_feat)
result = {
"pred_pose_9d": estimated_delta_rot_9d,
"in_process_sample": in_process_sample
}
return result
def get_main_feat(self, data):
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
scanned_target_pts_num_batch = data['scanned_target_points_num']
device = next(self.parameters()).device
pose_feat_seq_list = []
pts_num_feat_seq_list = []
for scanned_n_to_world_pose_9d,scanned_target_pts_num in zip(scanned_n_to_world_pose_9d_batch,scanned_target_pts_num_batch):
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
scanned_target_pts_num = scanned_target_pts_num.to(device)
pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d))
pts_num_feat_seq_list.append(self.pts_num_encoder.encode_pts_num(scanned_target_pts_num))
main_feat = self.pose_n_num_seq_encoder.encode_sequence(pts_num_feat_seq_list, pose_feat_seq_list)
combined_scanned_pts_batch = data['combined_scanned_pts']
global_scanned_feat = self.pts_encoder.encode_points(combined_scanned_pts_batch)
main_feat = torch.cat([main_feat, global_scanned_feat], dim=-1)
if torch.isnan(main_feat).any():
Log.error("nan in main_feat", True)
return main_feat

View File

@ -0,0 +1,20 @@
from torch import nn
import PytorchBoot.stereotype as stereotype
@stereotype.module("pts_num_encoder")
class PointsNumEncoder(nn.Module):
def __init__(self, config):
super(PointsNumEncoder, self).__init__()
self.config = config
out_dim = config["out_dim"]
self.act = nn.ReLU(True)
self.pts_num_encoder = nn.Sequential(
nn.Linear(1, out_dim),
self.act,
nn.Linear(out_dim, out_dim),
self.act,
)
def encode_pts_num(self, num_seq):
return self.pts_num_encoder(num_seq)

View File

@ -0,0 +1,72 @@
import torch
from torch import nn
from torch.nn.utils.rnn import pad_sequence
import PytorchBoot.stereotype as stereotype
@stereotype.module("transformer_pose_n_num_seq_encoder")
class TransformerPoseAndNumSequenceEncoder(nn.Module):
def __init__(self, config):
super(TransformerPoseAndNumSequenceEncoder, self).__init__()
self.config = config
embed_dim = config["pts_num_embed_dim"] + config["pose_embed_dim"]
encoder_layer = nn.TransformerEncoderLayer(
d_model=embed_dim,
nhead=config["num_heads"],
dim_feedforward=config["ffn_dim"],
batch_first=True,
)
self.transformer_encoder = nn.TransformerEncoder(
encoder_layer, num_layers=config["num_layers"]
)
self.fc = nn.Linear(embed_dim, config["output_dim"])
def encode_sequence(self, pts_num_embedding_list_batch, pose_embedding_list_batch):
combined_features_batch = []
lengths = []
for pts_num_embedding_list, pose_embedding_list in zip(pts_num_embedding_list_batch, pose_embedding_list_batch):
combined_features = [
torch.cat((pts_num_embed, pose_embed), dim=-1)
for pts_num_embed, pose_embed in zip(pts_num_embedding_list, pose_embedding_list)
]
combined_features_batch.append(torch.stack(combined_features))
lengths.append(len(combined_features))
combined_tensor = pad_sequence(combined_features_batch, batch_first=True) # Shape: [batch_size, max_seq_len, embed_dim]
max_len = max(lengths)
padding_mask = torch.tensor([([0] * length + [1] * (max_len - length)) for length in lengths], dtype=torch.bool).to(combined_tensor.device)
transformer_output = self.transformer_encoder(combined_tensor, src_key_padding_mask=padding_mask)
final_feature = transformer_output.mean(dim=1)
final_output = self.fc(final_feature)
return final_output
if __name__ == "__main__":
config = {
"pts_num_embed_dim": 128,
"pose_embed_dim": 256,
"num_heads": 4,
"ffn_dim": 256,
"num_layers": 3,
"output_dim": 2048,
}
encoder = TransformerPoseAndNumSequenceEncoder(config)
seq_len = [5, 8, 9, 4]
batch_size = 4
pts_num_embedding_list_batch = [
torch.randn(seq_len[idx], config["pts_num_embed_dim"]) for idx in range(batch_size)
]
pose_embedding_list_batch = [
torch.randn(seq_len[idx], config["pose_embed_dim"]) for idx in range(batch_size)
]
output_feature = encoder.encode_sequence(
pts_num_embedding_list_batch, pose_embedding_list_batch
)
print("Encoded Feature:", output_feature)
print("Feature Shape:", output_feature.shape)

View File

@ -4,7 +4,7 @@ from torch.nn.utils.rnn import pad_sequence
import PytorchBoot.stereotype as stereotype import PytorchBoot.stereotype as stereotype
@stereotype.module("transformer_seq_encoder") @stereotype.module("transformer_pose_n_pts_seq_encoder")
class TransformerSequenceEncoder(nn.Module): class TransformerSequenceEncoder(nn.Module):
def __init__(self, config): def __init__(self, config):
super(TransformerSequenceEncoder, self).__init__() super(TransformerSequenceEncoder, self).__init__()