sync
This commit is contained in:
@@ -22,6 +22,8 @@ class StrategyGenerator(Runner):
|
||||
"app_name": "generate",
|
||||
"runner_name": "strategy_generator"
|
||||
}
|
||||
self.to_specified_dir = ConfigManager.get("runner", "generate", "to_specified_dir")
|
||||
|
||||
|
||||
def run(self):
|
||||
dataset_name_list = ConfigManager.get("runner", "generate", "dataset_list")
|
||||
@@ -31,15 +33,13 @@ class StrategyGenerator(Runner):
|
||||
dataset_name = dataset_name_list[dataset_idx]
|
||||
status_manager.set_progress("generate", "strategy_generator", "dataset", dataset_idx, len(dataset_name_list))
|
||||
root_dir = ConfigManager.get("datasets", dataset_name, "root_dir")
|
||||
model_dir = ConfigManager.get("datasets", dataset_name, "model_dir")
|
||||
scene_name_list = os.listdir(root_dir)
|
||||
scene_name_list = os.listdir(root_dir)[:10]
|
||||
cnt = 0
|
||||
total = len(scene_name_list)
|
||||
for scene_name in scene_name_list:
|
||||
Log.info(f"({dataset_name})Processing [{cnt}/{total}]: {scene_name}")
|
||||
status_manager.set_progress("generate", "strategy_generator", "scene", cnt, total)
|
||||
self.generate_sequence(root_dir, model_dir, scene_name,voxel_threshold, overlap_threshold)
|
||||
|
||||
self.generate_sequence(root_dir, dataset_name, scene_name,voxel_threshold, overlap_threshold, )
|
||||
cnt += 1
|
||||
status_manager.set_progress("generate", "strategy_generator", "scene", total, total)
|
||||
status_manager.set_progress("generate", "strategy_generator", "dataset", len(dataset_name_list), len(dataset_name_list))
|
||||
@@ -52,20 +52,21 @@ class StrategyGenerator(Runner):
|
||||
def load_experiment(self, backup_name=None):
|
||||
super().load_experiment(backup_name)
|
||||
|
||||
def generate_sequence(self, root, model_dir, scene_name, voxel_threshold, overlap_threshold):
|
||||
def generate_sequence(self, root, dataset_name, scene_name, voxel_threshold, overlap_threshold):
|
||||
status_manager.set_status("generate", "strategy_generator", "scene", scene_name)
|
||||
frame_num = DataLoadUtil.get_scene_seq_length(root, scene_name)
|
||||
model_pts = DataLoadUtil.load_original_model_points(model_dir, scene_name)
|
||||
model_points_normals = DataLoadUtil.load_points_normals(root, scene_name)
|
||||
model_pts = model_points_normals[:,:3]
|
||||
down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold)
|
||||
obj_pose = DataLoadUtil.load_target_object_pose(root, scene_name)
|
||||
down_sampled_transformed_model_pts = PtsUtil.transform_point_cloud(down_sampled_model_pts, obj_pose)
|
||||
|
||||
pts_list = []
|
||||
|
||||
for frame_idx in range(frame_num):
|
||||
path = DataLoadUtil.get_path(root, scene_name, frame_idx)
|
||||
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
status_manager.set_progress("generate", "strategy_generator", "loading frame", frame_idx, frame_num)
|
||||
point_cloud = DataLoadUtil.get_point_cloud_world_from_path(path)
|
||||
sampled_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud, voxel_threshold)
|
||||
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
|
||||
sampled_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=45)
|
||||
if self.save_pts:
|
||||
pts_dir = os.path.join(root,scene_name, "pts")
|
||||
if not os.path.exists(pts_dir):
|
||||
@@ -74,7 +75,7 @@ class StrategyGenerator(Runner):
|
||||
pts_list.append(sampled_point_cloud)
|
||||
status_manager.set_progress("generate", "strategy_generator", "loading frame", frame_num, frame_num)
|
||||
|
||||
limited_useful_view, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_transformed_model_pts, pts_list, threshold=voxel_threshold, overlap_threshold=overlap_threshold, status_info=self.status_info)
|
||||
limited_useful_view, _ = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_model_pts, pts_list, threshold=voxel_threshold, overlap_threshold=overlap_threshold, status_info=self.status_info)
|
||||
data_pairs = self.generate_data_pairs(limited_useful_view)
|
||||
seq_save_data = {
|
||||
"data_pairs": data_pairs,
|
||||
@@ -84,12 +85,18 @@ class StrategyGenerator(Runner):
|
||||
|
||||
status_manager.set_status("generate", "strategy_generator", "max_coverage_rate", limited_useful_view[-1][1])
|
||||
Log.success(f"Scene <{scene_name}> Finished, Max Coverage Rate: {limited_useful_view[-1][1]}, Best Sequence length: {len(limited_useful_view)}")
|
||||
|
||||
output_label_path = DataLoadUtil.get_label_path(root, scene_name)
|
||||
if self.to_specified_dir:
|
||||
output_dir = ConfigManager.get("datasets", dataset_name,"output_dir")
|
||||
output_label_path = os.path.join(output_dir, f"{scene_name}.json")
|
||||
if not os.path.exists(output_dir):
|
||||
os.makedirs(output_dir)
|
||||
else:
|
||||
output_label_path = DataLoadUtil.get_label_path(root, scene_name)
|
||||
|
||||
with open(output_label_path, 'w') as f:
|
||||
json.dump(seq_save_data, f)
|
||||
|
||||
DataLoadUtil.save_downsampled_world_model_points(root, scene_name, down_sampled_transformed_model_pts)
|
||||
DataLoadUtil.save_downsampled_world_model_points(root, scene_name, down_sampled_model_pts)
|
||||
|
||||
def generate_data_pairs(self, useful_view):
|
||||
data_pairs = []
|
||||
|
Reference in New Issue
Block a user