sync
This commit is contained in:
@@ -62,14 +62,46 @@ class DataLoadUtil:
|
||||
return pose_mat
|
||||
|
||||
@staticmethod
|
||||
def load_depth(path):
|
||||
depth_path = os.path.join(os.path.dirname(path), "depth", os.path.basename(path) + ".png")
|
||||
depth = cv2.imread(depth_path, cv2.IMREAD_UNCHANGED)
|
||||
depth = depth.astype(np.float32) / 65535.0
|
||||
min_depth = 0.01
|
||||
max_depth = 5.0
|
||||
depth_meters = min_depth + (max_depth - min_depth) * depth
|
||||
return depth_meters
|
||||
def load_depth(path, min_depth=0.01,max_depth=5.0,binocular=False):
|
||||
|
||||
def load_depth_from_real_path(real_path, min_depth, max_depth):
|
||||
depth = cv2.imread(real_path, cv2.IMREAD_UNCHANGED)
|
||||
depth = depth.astype(np.float32) / 65535.0
|
||||
min_depth = min_depth
|
||||
max_depth = max_depth
|
||||
depth_meters = min_depth + (max_depth - min_depth) * depth
|
||||
return depth_meters
|
||||
|
||||
if binocular:
|
||||
depth_path_L = os.path.join(os.path.dirname(path), "depth", os.path.basename(path) + "_L.png")
|
||||
depth_path_R = os.path.join(os.path.dirname(path), "depth", os.path.basename(path) + "_R.png")
|
||||
depth_meters_L = load_depth_from_real_path(depth_path_L, min_depth, max_depth)
|
||||
depth_meters_R = load_depth_from_real_path(depth_path_R, min_depth, max_depth)
|
||||
return depth_meters_L, depth_meters_R
|
||||
else:
|
||||
depth_path = os.path.join(os.path.dirname(path), "depth", os.path.basename(path) + ".png")
|
||||
depth_meters = load_depth_from_real_path(depth_path, min_depth, max_depth)
|
||||
return depth_meters
|
||||
|
||||
@staticmethod
|
||||
def load_seg(path, binocular=False):
|
||||
if binocular:
|
||||
def clean_mask(mask_image):
|
||||
green = [0, 255, 0, 255]
|
||||
red = [255, 0, 0, 255]
|
||||
threshold = 2
|
||||
mask_image = np.where(np.abs(mask_image - green) <= threshold, green, mask_image)
|
||||
mask_image = np.where(np.abs(mask_image - red) <= threshold, red, mask_image)
|
||||
return mask_image
|
||||
mask_path_L = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + "_L.png")
|
||||
mask_image_L = clean_mask(cv2.imread(mask_path_L, cv2.IMREAD_UNCHANGED))
|
||||
mask_path_R = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + "_R.png")
|
||||
mask_image_R = clean_mask(cv2.imread(mask_path_R, cv2.IMREAD_UNCHANGED))
|
||||
return mask_image_L, mask_image_R
|
||||
else:
|
||||
mask_path = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + ".png")
|
||||
mask_image = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
|
||||
return mask_image
|
||||
|
||||
@staticmethod
|
||||
def load_label(path):
|
||||
@@ -83,12 +115,6 @@ class DataLoadUtil:
|
||||
rgb_image = cv2.imread(rgb_path, cv2.IMREAD_COLOR)
|
||||
return rgb_image
|
||||
|
||||
@staticmethod
|
||||
def load_seg(path):
|
||||
mask_path = os.path.join(os.path.dirname(path), "mask", os.path.basename(path) + ".png")
|
||||
mask_image = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
|
||||
return mask_image
|
||||
|
||||
@staticmethod
|
||||
def cam_pose_transformation(cam_pose_before):
|
||||
offset = np.asarray([
|
||||
@@ -100,20 +126,27 @@ class DataLoadUtil:
|
||||
return cam_pose_after
|
||||
|
||||
@staticmethod
|
||||
def load_cam_info(path):
|
||||
def load_cam_info(path, binocular=False):
|
||||
camera_params_path = os.path.join(os.path.dirname(path), "camera_params", os.path.basename(path) + ".json")
|
||||
with open(camera_params_path, 'r') as f:
|
||||
label_data = json.load(f)
|
||||
cam_to_world = np.asarray(label_data["extrinsic"])
|
||||
cam_to_world = DataLoadUtil.cam_pose_transformation(cam_to_world)
|
||||
cam_intrinsic = np.asarray(label_data["intrinsic"])
|
||||
return {
|
||||
cam_info = {
|
||||
"cam_to_world": cam_to_world,
|
||||
"cam_intrinsic": cam_intrinsic
|
||||
"cam_intrinsic": cam_intrinsic,
|
||||
"far_plane": label_data["far_plane"],
|
||||
"near_plane": label_data["near_plane"]
|
||||
}
|
||||
|
||||
if binocular:
|
||||
cam_to_world_R = np.asarray(label_data["extrinsic_R"])
|
||||
cam_to_world_R = DataLoadUtil.cam_pose_transformation(cam_to_world_R)
|
||||
cam_info["cam_to_world_R"] = cam_to_world_R
|
||||
return cam_info
|
||||
|
||||
@staticmethod
|
||||
def get_target_point_cloud(depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=255):
|
||||
def get_target_point_cloud(depth, cam_intrinsic, cam_extrinsic, mask, target_mask_label=(0,255,0,255)):
|
||||
h, w = depth.shape
|
||||
i, j = np.meshgrid(np.arange(w), np.arange(h), indexing='xy')
|
||||
|
||||
@@ -122,9 +155,10 @@ class DataLoadUtil:
|
||||
y = (j - cam_intrinsic[1, 2]) * z / cam_intrinsic[1, 1]
|
||||
|
||||
points_camera = np.stack((x, y, z), axis=-1).reshape(-1, 3)
|
||||
mask = mask.reshape(-1)
|
||||
mask = mask.reshape(-1,4)
|
||||
|
||||
target_mask = mask == target_mask_label
|
||||
target_mask = (mask == target_mask_label).all(axis=-1)
|
||||
|
||||
target_points_camera = points_camera[target_mask]
|
||||
target_points_camera_aug = np.concatenate([target_points_camera, np.ones((target_points_camera.shape[0], 1))], axis=-1)
|
||||
|
||||
@@ -133,22 +167,45 @@ class DataLoadUtil:
|
||||
"points_world": target_points_world,
|
||||
"points_camera": target_points_camera
|
||||
}
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_point_cloud_world_from_path(path):
|
||||
cam_info = DataLoadUtil.load_cam_info(path)
|
||||
depth = DataLoadUtil.load_depth(path)
|
||||
mask = DataLoadUtil.load_seg(path)
|
||||
point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask)
|
||||
return point_cloud['points_world']
|
||||
def get_target_point_cloud_world_from_path(path, binocular=False):
|
||||
cam_info = DataLoadUtil.load_cam_info(path, binocular=binocular)
|
||||
if binocular:
|
||||
voxel_size = 0.0005
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(path, cam_info['near_plane'], cam_info['far_plane'], binocular=True)
|
||||
mask_L, mask_R = DataLoadUtil.load_seg(path, binocular=True)
|
||||
point_cloud_L = DataLoadUtil.get_target_point_cloud(depth_L, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask_L)['points_world']
|
||||
point_cloud_R = DataLoadUtil.get_target_point_cloud(depth_R, cam_info['cam_intrinsic'], cam_info['cam_to_world_R'], mask_R)['points_world']
|
||||
overlap_points = DataLoadUtil.get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size)
|
||||
return overlap_points
|
||||
else:
|
||||
depth = DataLoadUtil.load_depth(path, cam_info['near_plane'], cam_info['far_plane'])
|
||||
mask = DataLoadUtil.load_seg(path)
|
||||
point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info['cam_intrinsic'], cam_info['cam_to_world'], mask)['points_world']
|
||||
return point_cloud
|
||||
|
||||
@staticmethod
|
||||
def get_point_cloud_list_from_seq(root, scene_name, num_frames):
|
||||
point_cloud_list = []
|
||||
for frame_idx in range(num_frames):
|
||||
path = DataLoadUtil.get_path(root, scene_name, frame_idx)
|
||||
point_cloud = DataLoadUtil.get_point_cloud_world_from_path(path)
|
||||
point_cloud_list.append(point_cloud)
|
||||
return point_cloud_list
|
||||
|
||||
def voxelize_points(points, voxel_size):
|
||||
|
||||
voxel_indices = np.floor(points / voxel_size).astype(np.int32)
|
||||
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
|
||||
return unique_voxels
|
||||
|
||||
@staticmethod
|
||||
def get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size=0.005):
|
||||
voxels_L, indices_L = DataLoadUtil.voxelize_points(point_cloud_L, voxel_size)
|
||||
voxels_R, _ = DataLoadUtil.voxelize_points(point_cloud_R, voxel_size)
|
||||
|
||||
voxel_indices_L = voxels_L.view([('', voxels_L.dtype)]*3)
|
||||
voxel_indices_R = voxels_R.view([('', voxels_R.dtype)]*3)
|
||||
overlapping_voxels = np.intersect1d(voxel_indices_L, voxel_indices_R)
|
||||
mask_L = np.isin(indices_L, np.where(np.isin(voxel_indices_L, overlapping_voxels))[0])
|
||||
overlapping_points = point_cloud_L[mask_L]
|
||||
return overlapping_points
|
||||
|
||||
@staticmethod
|
||||
def load_points_normals(root, scene_name):
|
||||
points_path = os.path.join(root, scene_name, "points_and_normals.txt")
|
||||
points_normals = np.loadtxt(points_path)
|
||||
return points_normals
|
@@ -101,5 +101,20 @@ class ReconstructionUtil:
|
||||
runner_name = status_info["runner_name"]
|
||||
sm.set_progress(app_name, runner_name, "processed view", len(point_cloud_list), len(point_cloud_list))
|
||||
return view_sequence, remaining_views
|
||||
|
||||
@staticmethod
|
||||
def filter_points(points, points_normals, cam_pose, voxel_size=0.005, theta=45):
|
||||
sampled_points = PtsUtil.voxel_downsample_point_cloud(points, voxel_size)
|
||||
kdtree = cKDTree(points_normals[:,:3])
|
||||
_, indices = kdtree.query(sampled_points)
|
||||
nearest_points = points_normals[indices]
|
||||
|
||||
normals = nearest_points[:, 3:]
|
||||
camera_axis = -cam_pose[:3, 2]
|
||||
normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True)
|
||||
cos_theta = np.dot(normals_normalized, camera_axis)
|
||||
theta_rad = np.deg2rad(theta)
|
||||
filtered_sampled_points= sampled_points[cos_theta > np.cos(theta_rad)]
|
||||
|
||||
return filtered_sampled_points[:, :3]
|
||||
|
Reference in New Issue
Block a user