add global_feat

This commit is contained in:
2024-09-24 09:10:25 +00:00
parent b209ce050c
commit 43f22ad91b
7 changed files with 123 additions and 62 deletions

View File

@@ -7,12 +7,11 @@ from PytorchBoot.utils.log_util import Log
import torch
import os
import sys
sys.path.append(r"/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction")
sys.path.append(r"/home/data/hofee/project/nbv_rec/nbv_reconstruction")
from utils.data_load import DataLoadUtil
from utils.pose import PoseUtil
from utils.pts import PtsUtil
from utils.reconstruction import ReconstructionUtil
@stereotype.dataset("nbv_reconstruction_dataset")
@@ -35,7 +34,7 @@ class NBVReconstructionDataset(BaseDataset):
self.model_dir = config["model_dir"]
self.filter_degree = config["filter_degree"]
if self.type == namespace.Mode.TRAIN:
scale_ratio = 1
scale_ratio = 10
self.datalist = self.datalist*scale_ratio
if self.cache:
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
@@ -56,20 +55,34 @@ class NBVReconstructionDataset(BaseDataset):
def get_datalist(self):
datalist = []
for scene_name in self.scene_name_list:
label_path = DataLoadUtil.get_label_path_old(self.root_dir, scene_name)
label_data = DataLoadUtil.load_label(label_path)
for data_pair in label_data["data_pairs"]:
scanned_views = data_pair[0]
next_best_view = data_pair[1]
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
scene_max_coverage_rate = 0
max_coverage_rate_list = []
for seq_idx in range(seq_num):
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx)
label_data = DataLoadUtil.load_label(label_path)
max_coverage_rate = label_data["max_coverage_rate"]
datalist.append(
{
"scanned_views": scanned_views,
"next_best_view": next_best_view,
"max_coverage_rate": max_coverage_rate,
"scene_name": scene_name,
}
)
if max_coverage_rate > scene_max_coverage_rate:
scene_max_coverage_rate = max_coverage_rate
max_coverage_rate_list.append(max_coverage_rate)
mean_coverage_rate = np.mean(max_coverage_rate_list)
for seq_idx in range(seq_num):
label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, seq_idx)
label_data = DataLoadUtil.load_label(label_path)
if max_coverage_rate_list[seq_idx] > mean_coverage_rate - 0.1:
for data_pair in label_data["data_pairs"]:
scanned_views = data_pair[0]
next_best_view = data_pair[1]
datalist.append({
"scanned_views": scanned_views,
"next_best_view": next_best_view,
"seq_max_coverage_rate": max_coverage_rate,
"scene_name": scene_name,
"label_idx": seq_idx,
"scene_max_coverage_rate": scene_max_coverage_rate
})
return datalist
def preprocess_cache(self):
@@ -102,7 +115,7 @@ class NBVReconstructionDataset(BaseDataset):
data_item_info = self.datalist[index]
scanned_views = data_item_info["scanned_views"]
nbv = data_item_info["next_best_view"]
max_coverage_rate = data_item_info["max_coverage_rate"]
max_coverage_rate = data_item_info["seq_max_coverage_rate"]
scene_name = data_item_info["scene_name"]
scanned_views_pts, scanned_coverages_rate, scanned_n_to_world_pose = [], [], []
@@ -151,13 +164,18 @@ class NBVReconstructionDataset(BaseDataset):
best_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(best_frame_to_world[:3,:3]))
best_to_world_trans = best_frame_to_world[:3,3]
best_to_world_9d = np.concatenate([best_to_world_6d, best_to_world_trans], axis=0)
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
data_item = {
"scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32),
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np,dtype=np.float32),
"scanned_coverage_rate": scanned_coverages_rate,
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose,dtype=np.float32),
"best_coverage_rate": nbv_coverage_rate,
"best_to_world_pose_9d": np.asarray(best_to_world_9d,dtype=np.float32),
"max_coverage_rate": max_coverage_rate,
"seq_max_coverage_rate": max_coverage_rate,
"scene_name": scene_name
}
@@ -195,10 +213,11 @@ class NBVReconstructionDataset(BaseDataset):
collate_data["scanned_pts"] = [torch.tensor(item['scanned_pts']) for item in batch]
collate_data["scanned_n_to_world_pose_9d"] = [torch.tensor(item['scanned_n_to_world_pose_9d']) for item in batch]
collate_data["best_to_world_pose_9d"] = torch.stack([torch.tensor(item['best_to_world_pose_9d']) for item in batch])
collate_data["combined_scanned_pts"] = torch.stack([torch.tensor(item['combined_scanned_pts']) for item in batch])
if "first_frame_to_world" in batch[0]:
collate_data["first_frame_to_world"] = torch.stack([torch.tensor(item["first_frame_to_world"]) for item in batch])
for key in batch[0].keys():
if key not in ["scanned_pts", "scanned_n_to_world_pose_9d", "best_to_world_pose_9d", "first_frame_to_world"]:
if key not in ["scanned_pts", "scanned_n_to_world_pose_9d", "best_to_world_pose_9d", "first_frame_to_world", "combined_scanned_pts"]:
collate_data[key] = [item[key] for item in batch]
return collate_data
return collate_fn
@@ -211,11 +230,11 @@ if __name__ == "__main__":
torch.manual_seed(seed)
np.random.seed(seed)
config = {
"root_dir": "/media/hofee/repository/nbv_reconstruction_data_512",
"model_dir": "/media/hofee/data/data/scaled_object_meshes",
"root_dir": "/home/data/hofee/project/nbv_rec/data/nbv_rec_data_512_preproc_npy",
"model_dir": "/home/data/hofee/project/nbv_rec/data/scaled_object_meshes",
"source": "nbv_reconstruction_dataset",
"split_file": "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/OmniObject3d_train.txt",
"load_from_preprocess": False,
"split_file": "/home/data/hofee/project/nbv_rec/data/OmniObject3d_test.txt",
"load_from_preprocess": True,
"ratio": 0.5,
"batch_size": 2,
"filter_degree": 75,

View File

@@ -5,16 +5,20 @@ import PytorchBoot.stereotype as stereotype
from PytorchBoot.factory.component_factory import ComponentFactory
from PytorchBoot.utils import Log
from utils.pts import PtsUtil
@stereotype.pipeline("nbv_reconstruction_pipeline")
class NBVReconstructionPipeline(nn.Module):
def __init__(self, config):
super(NBVReconstructionPipeline, self).__init__()
self.config = config
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, config["pts_encoder"])
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, config["pose_encoder"])
self.seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, config["seq_encoder"])
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, config["view_finder"])
self.eps = 1e-5
self.module_config = config["modules"]
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
self.seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["seq_encoder"])
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
self.eps = float(self.config["eps"])
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
def forward(self, data):
mode = data["mode"]
@@ -38,14 +42,14 @@ class NBVReconstructionPipeline(nn.Module):
return perturbed_x, random_t, target_score, std
def forward_train(self, data):
seq_feat = self.get_seq_feat(data)
main_feat = self.get_main_feat(data)
''' get std '''
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
input_data = {
"sampled_pose": perturbed_x,
"t": random_t,
"seq_feat": seq_feat,
"main_feat": main_feat,
}
estimated_score = self.view_finder(input_data)
output = {
@@ -56,29 +60,44 @@ class NBVReconstructionPipeline(nn.Module):
return output
def forward_test(self,data):
seq_feat = self.get_seq_feat(data)
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(seq_feat)
main_feat = self.get_main_feat(data)
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(main_feat)
result = {
"pred_pose_9d": estimated_delta_rot_9d,
"in_process_sample": in_process_sample
}
return result
def get_seq_feat(self, data):
def get_main_feat(self, data):
scanned_pts_batch = data['scanned_pts']
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
device = next(self.parameters()).device
pts_feat_seq_list = []
pose_feat_seq_list = []
device = next(self.parameters()).device
for scanned_pts,scanned_n_to_world_pose_9d in zip(scanned_pts_batch,scanned_n_to_world_pose_9d_batch):
scanned_pts = scanned_pts.to(device)
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
pts_feat_seq_list.append(self.pts_encoder.encode_points(scanned_pts))
pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d))
main_feat = self.seq_encoder.encode_sequence(pts_feat_seq_list, pose_feat_seq_list)
seq_feat = self.seq_encoder.encode_sequence(pts_feat_seq_list, pose_feat_seq_list)
if torch.isnan(seq_feat).any():
Log.error("nan in seq_feat", True)
return seq_feat
if self.enable_global_scanned_feat:
combined_scanned_pts_batch = data['combined_scanned_pts']
global_scanned_feat = self.pts_encoder.encode_points(combined_scanned_pts_batch)
main_feat = torch.cat([main_feat, global_scanned_feat], dim=-1)
if torch.isnan(main_feat).any():
Log.error("nan in main_feat", True)
return main_feat