fix bug for training
This commit is contained in:
112
core/dataset.py
112
core/dataset.py
@@ -1,10 +1,10 @@
|
||||
import numpy as np
|
||||
from PytorchBoot.dataset import BaseDataset
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from torch.nn.utils.rnn import pad_sequence
|
||||
import torch
|
||||
|
||||
import sys
|
||||
sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction")
|
||||
sys.path.append(r"/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction")
|
||||
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.pose import PoseUtil
|
||||
@@ -56,18 +56,25 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
scene_name = data_item_info["scene_name"]
|
||||
scanned_views_pts, scanned_coverages_rate, scanned_n_to_1_pose = [], [], []
|
||||
first_frame_idx = scanned_views[0][0]
|
||||
first_frame_to_world = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx))["cam_to_world"]
|
||||
first_cam_info = DataLoadUtil.load_cam_info(DataLoadUtil.get_path(self.root_dir, scene_name, first_frame_idx), binocular=True)
|
||||
first_frame_to_world = first_cam_info["cam_to_world"]
|
||||
for view in scanned_views:
|
||||
frame_idx = view[0]
|
||||
coverage_rate = view[1]
|
||||
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
|
||||
depth = DataLoadUtil.load_depth(view_path)
|
||||
cam_info = DataLoadUtil.load_cam_info(view_path)
|
||||
mask = DataLoadUtil.load_seg(view_path)
|
||||
frame_curr_to_world = cam_info["cam_to_world"]
|
||||
n_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), frame_curr_to_world)
|
||||
target_point_cloud = DataLoadUtil.get_target_point_cloud(depth, cam_info["cam_intrinsic"], n_to_1_pose, mask)["points_world"]
|
||||
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(target_point_cloud, self.pts_num)
|
||||
cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
|
||||
n_to_world_pose = cam_info["cam_to_world"]
|
||||
nR_to_world_pose = cam_info["cam_to_world_R"]
|
||||
n_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), n_to_world_pose)
|
||||
nR_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), nR_to_world_pose)
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(view_path, cam_info['near_plane'], cam_info['far_plane'], binocular=True)
|
||||
point_cloud_L = DataLoadUtil.get_point_cloud(depth_L, cam_info['cam_intrinsic'], n_to_1_pose)['points_world']
|
||||
point_cloud_R = DataLoadUtil.get_point_cloud(depth_R, cam_info['cam_intrinsic'], nR_to_1_pose)['points_world']
|
||||
|
||||
point_cloud_L = PtsUtil.random_downsample_point_cloud(point_cloud_L, 65536)
|
||||
point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, 65536)
|
||||
overlap_points = DataLoadUtil.get_overlapping_points(point_cloud_L, point_cloud_R)
|
||||
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(overlap_points, self.pts_num)
|
||||
scanned_views_pts.append(downsampled_target_point_cloud)
|
||||
scanned_coverages_rate.append(coverage_rate)
|
||||
n_to_1_6d = PoseUtil.matrix_to_rotation_6d_numpy(np.asarray(n_to_1_pose[:3,:3]))
|
||||
@@ -86,10 +93,10 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
|
||||
data_item = {
|
||||
"scanned_pts": np.asarray(scanned_views_pts,dtype=np.float32),
|
||||
"scanned_coverage_rate": np.asarray(scanned_coverages_rate,dtype=np.float32),
|
||||
"scanned_coverage_rate": scanned_coverages_rate,
|
||||
"scanned_n_to_1_pose_9d": np.asarray(scanned_n_to_1_pose,dtype=np.float32),
|
||||
"best_coverage_rate": nbv_coverage_rate,
|
||||
"best_to_1_pose_9d": best_to_1_9d,
|
||||
"best_to_1_pose_9d": np.asarray(best_to_1_9d,dtype=np.float32),
|
||||
"max_coverage_rate": max_coverage_rate,
|
||||
"scene_name": scene_name
|
||||
}
|
||||
@@ -101,23 +108,14 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
|
||||
def get_collate_fn(self):
|
||||
def collate_fn(batch):
|
||||
scanned_pts = [item['scanned_pts'] for item in batch]
|
||||
scanned_n_to_1_pose_9d = [item['scanned_n_to_1_pose_9d'] for item in batch]
|
||||
rest = {}
|
||||
collate_data = {}
|
||||
collate_data["scanned_pts"] = [torch.tensor(item['scanned_pts']) for item in batch]
|
||||
collate_data["scanned_n_to_1_pose_9d"] = [torch.tensor(item['scanned_n_to_1_pose_9d']) for item in batch]
|
||||
collate_data["best_to_1_pose_9d"] = torch.stack([torch.tensor(item['best_to_1_pose_9d']) for item in batch])
|
||||
for key in batch[0].keys():
|
||||
if key in ['scanned_pts', 'scanned_n_to_1_pose_9d']:
|
||||
continue
|
||||
if isinstance(batch[0][key], torch.Tensor):
|
||||
rest[key] = torch.stack([item[key] for item in batch])
|
||||
elif isinstance(batch[0][key], str):
|
||||
rest[key] = [item[key] for item in batch]
|
||||
else:
|
||||
rest[key] = [item[key] for item in batch]
|
||||
return {
|
||||
'scanned_pts': scanned_pts,
|
||||
'scanned_n_to_1_pose_9d': scanned_n_to_1_pose_9d,
|
||||
**rest
|
||||
}
|
||||
if key not in ["scanned_pts", "scanned_n_to_1_pose_9d", "best_to_1_pose_9d"]:
|
||||
collate_data[key] = [item[key] for item in batch]
|
||||
return collate_data
|
||||
return collate_fn
|
||||
|
||||
if __name__ == "__main__":
|
||||
@@ -126,36 +124,48 @@ if __name__ == "__main__":
|
||||
torch.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
config = {
|
||||
"root_dir": "C:\\Document\\Local Project\\nbv_rec\\data\\sample",
|
||||
"split_file": "C:\\Document\\Local Project\\nbv_rec\\data\\OmniObject3d_train.txt",
|
||||
"root_dir": "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/scenes",
|
||||
"split_file": "/media/hofee/data/project/python/nbv_reconstruction/sample_for_training/OmniObject3d_train.txt",
|
||||
"ratio": 0.5,
|
||||
"batch_size": 2,
|
||||
"num_workers": 0,
|
||||
"pts_num": 2048
|
||||
"pts_num": 32684
|
||||
}
|
||||
ds = NBVReconstructionDataset(config)
|
||||
print(len(ds))
|
||||
#ds.__getitem__(10)
|
||||
dl = ds.get_loader(shuffle=True)
|
||||
for idx, data in enumerate(dl):
|
||||
cnt=0
|
||||
print(data["scene_name"])
|
||||
print(data["scanned_coverage_rate"])
|
||||
print(data["best_coverage_rate"])
|
||||
for pts in data["scanned_pts"][0]:
|
||||
#np.savetxt(f"pts_{cnt}.txt", pts)
|
||||
cnt+=1
|
||||
#np.savetxt("best_pts.txt", best_pts)
|
||||
for key, value in data.items():
|
||||
if isinstance(value, torch.Tensor):
|
||||
print(key, ":" ,value.shape)
|
||||
else:
|
||||
print(key, ":" ,len(value))
|
||||
if key == "scanned_n_to_1_pose_9d":
|
||||
for val in value:
|
||||
print(val.shape)
|
||||
if key == "scanned_pts":
|
||||
for val in value:
|
||||
print(val.shape)
|
||||
data = ds.process_batch(data, "cuda:0")
|
||||
print(data)
|
||||
break
|
||||
#
|
||||
# for idx, data in enumerate(dl):
|
||||
# cnt=0
|
||||
# print(data["scene_name"])
|
||||
# print(data["scanned_coverage_rate"])
|
||||
# print(data["best_coverage_rate"])
|
||||
# for pts in data["scanned_pts"][0]:
|
||||
# #np.savetxt(f"pts_{cnt}.txt", pts)
|
||||
# cnt+=1
|
||||
# #np.savetxt("best_pts.txt", best_pts)
|
||||
# for key, value in data.items():
|
||||
# if isinstance(value, torch.Tensor):
|
||||
# print(key, ":" ,value.shape)
|
||||
# else:
|
||||
# print(key, ":" ,len(value))
|
||||
# if key == "scanned_n_to_1_pose_9d":
|
||||
# for val in value:
|
||||
# print(val.shape)
|
||||
# if key == "scanned_pts":
|
||||
# print("scanned_pts")
|
||||
# for val in value:
|
||||
# print(val.shape)
|
||||
# cnt = 0
|
||||
# for v in val:
|
||||
# import ipdb;ipdb.set_trace()
|
||||
# np.savetxt(f"pts_{cnt}.txt", v)
|
||||
# cnt+=1
|
||||
|
||||
|
||||
print()
|
||||
# print()
|
@@ -14,12 +14,11 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, config["pose_encoder"])
|
||||
self.seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, config["seq_encoder"])
|
||||
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, config["view_finder"])
|
||||
self.eps = 1e-5
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
# ----- Debug Trace ----- #
|
||||
import ipdb; ipdb.set_trace()
|
||||
# ------------------------ #
|
||||
|
||||
if mode == namespace.Mode.TRAIN:
|
||||
return self.forward_train(data)
|
||||
elif mode == namespace.Mode.TEST:
|
||||
@@ -27,29 +26,22 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
else:
|
||||
Log.error("Unknown mode: {}".format(mode), True)
|
||||
|
||||
def pertube_data(self, gt_delta_rot_6d):
|
||||
bs = gt_delta_rot_6d.shape[0]
|
||||
random_t = torch.rand(bs, device=self.device) * (1. - self.eps) + self.eps
|
||||
def pertube_data(self, gt_delta_9d):
|
||||
bs = gt_delta_9d.shape[0]
|
||||
random_t = torch.rand(bs, device=gt_delta_9d.device) * (1. - self.eps) + self.eps
|
||||
random_t = random_t.unsqueeze(-1)
|
||||
mu, std = self.view_finder.marginal_prob(gt_delta_rot_6d, random_t)
|
||||
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
|
||||
std = std.view(-1, 1)
|
||||
z = torch.randn_like(gt_delta_rot_6d)
|
||||
z = torch.randn_like(gt_delta_9d)
|
||||
perturbed_x = mu + z * std
|
||||
target_score = - z * std / (std ** 2)
|
||||
return perturbed_x, random_t, target_score, std
|
||||
|
||||
def forward_train(self, data):
|
||||
pts_list = data['pts_list']
|
||||
pose_list = data['pose_list']
|
||||
gt_rot_6d = data["nbv_cam_pose"]
|
||||
pts_feat_list = []
|
||||
pose_feat_list = []
|
||||
for pts,pose in zip(pts_list,pose_list):
|
||||
pts_feat_list.append(self.pts_encoder.encode_points(pts))
|
||||
pose_feat_list.append(self.pose_encoder.encode_pose(pose))
|
||||
seq_feat = self.seq_encoder.encode_sequence(pts_feat_list, pose_feat_list)
|
||||
seq_feat = self.get_seq_feat(data)
|
||||
''' get std '''
|
||||
perturbed_x, random_t, target_score, std = self.pertube_data(gt_rot_6d)
|
||||
best_to_1_pose_9d_batch = data["best_to_1_pose_9d"]
|
||||
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_1_pose_9d_batch)
|
||||
input_data = {
|
||||
"sampled_pose": perturbed_x,
|
||||
"t": random_t,
|
||||
@@ -64,14 +56,7 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
return output
|
||||
|
||||
def forward_test(self,data):
|
||||
pts_list = data['pts_list']
|
||||
pose_list = data['pose_list']
|
||||
pts_feat_list = []
|
||||
pose_feat_list = []
|
||||
for pts,pose in zip(pts_list,pose_list):
|
||||
pts_feat_list.append(self.pts_encoder.encode_points(pts))
|
||||
pose_feat_list.append(self.pose_encoder.encode_pose(pose))
|
||||
seq_feat = self.seq_encoder.encode_sequence(pts_feat_list, pose_feat_list)
|
||||
seq_feat = self.get_seq_feat(data)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(seq_feat)
|
||||
result = {
|
||||
"pred_pose_9d": estimated_delta_rot_9d,
|
||||
@@ -79,4 +64,19 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
}
|
||||
return result
|
||||
|
||||
def get_seq_feat(self, data):
|
||||
scanned_pts_batch = data['scanned_pts']
|
||||
scanned_n_to_1_pose_9d_batch = data['scanned_n_to_1_pose_9d']
|
||||
best_to_1_pose_9d_batch = data["best_to_1_pose_9d"]
|
||||
pts_feat_seq_list = []
|
||||
pose_feat_seq_list = []
|
||||
|
||||
for scanned_pts,scanned_n_to_1_pose_9d in zip(scanned_pts_batch,scanned_n_to_1_pose_9d_batch):
|
||||
print(scanned_n_to_1_pose_9d.shape)
|
||||
scanned_pts = scanned_pts.to(best_to_1_pose_9d_batch.device)
|
||||
scanned_n_to_1_pose_9d = scanned_n_to_1_pose_9d.to(best_to_1_pose_9d_batch.device)
|
||||
pts_feat_seq_list.append(self.pts_encoder.encode_points(scanned_pts))
|
||||
pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_1_pose_9d))
|
||||
seq_feat = self.seq_encoder.encode_sequence(pts_feat_seq_list, pose_feat_seq_list)
|
||||
return seq_feat
|
||||
|
||||
|
Reference in New Issue
Block a user