diff --git a/configs/server/server_train_config.yaml b/configs/server/server_train_config.yaml index db56e2a..a55b0b2 100644 --- a/configs/server/server_train_config.yaml +++ b/configs/server/server_train_config.yaml @@ -7,7 +7,7 @@ runner: parallel: False experiment: - name: overfit_ab_global_and_partial_global + name: train_ab_global_and_partial_global root_dir: "experiments" use_checkpoint: False epoch: -1 # -1 stands for last epoch @@ -32,10 +32,10 @@ runner: dataset: OmniObject3d_train: - root_dir: "/data/hofee/nbv_rec_part2_preprocessed" + root_dir: "/data/hofee/data/new_full_data" model_dir: "../data/scaled_object_meshes" source: nbv_reconstruction_dataset - split_file: "/data/hofee/data/sample.txt" + split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt" type: train cache: True ratio: 1 @@ -45,32 +45,32 @@ dataset: load_from_preprocess: True OmniObject3d_test: - root_dir: "/data/hofee/nbv_rec_part2_preprocessed" + root_dir: "/data/hofee/data/new_full_data" model_dir: "../data/scaled_object_meshes" source: nbv_reconstruction_dataset - split_file: "/data/hofee/data/sample.txt" + split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt" type: test cache: True filter_degree: 75 eval_list: - pose_diff - ratio: 0.05 + ratio: 1 batch_size: 80 num_workers: 12 pts_num: 8192 load_from_preprocess: True OmniObject3d_val: - root_dir: "/data/hofee/nbv_rec_part2_preprocessed" + root_dir: "/data/hofee/data/new_full_data" model_dir: "../data/scaled_object_meshes" source: nbv_reconstruction_dataset - split_file: "/data/hofee/data/sample.txt" + split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt" type: test cache: True filter_degree: 75 eval_list: - pose_diff - ratio: 0.005 + ratio: 0.1 batch_size: 80 num_workers: 12 pts_num: 8192 diff --git a/core/nbv_dataset.py b/core/nbv_dataset.py index 01442a7..6583e5b 100644 --- a/core/nbv_dataset.py +++ b/core/nbv_dataset.py @@ -35,7 +35,7 @@ class NBVReconstructionDataset(BaseDataset): #self.model_dir = config["model_dir"] self.filter_degree = config["filter_degree"] if self.type == namespace.Mode.TRAIN: - scale_ratio = 50 + scale_ratio = 1 self.datalist = self.datalist*scale_ratio if self.cache: expr_root = ConfigManager.get("runner", "experiment", "root_dir") @@ -149,7 +149,7 @@ class NBVReconstructionDataset(BaseDataset): DataLoadUtil.load_from_preprocessed_pts(view_path) ) downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud( - target_point_cloud, self.pts_num, replace=False + target_point_cloud, self.pts_num ) scanned_views_pts.append(downsampled_target_point_cloud) scanned_coverages_rate.append(coverage_rate) @@ -177,11 +177,8 @@ class NBVReconstructionDataset(BaseDataset): best_to_world_9d = np.concatenate( [best_to_world_6d, best_to_world_trans], axis=0 ) - - start_time = time.time() combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0) - #Log.info(f"combined_scanned_views_pts shape: {combined_scanned_views_pts.shape}") voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_views_pts, 0.003) random_downsampled_combined_scanned_pts_np, random_downsample_idx = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num, require_idx=True) @@ -197,10 +194,6 @@ class NBVReconstructionDataset(BaseDataset): view_unique_downsampled_idx_set = set(view_unique_downsampled_idx) mask = np.array([idx in view_unique_downsampled_idx_set for idx in all_random_downsample_idx]) scanned_pts_mask.append(mask) - #Log.info(f"random_downsampled_combined_scanned_pts_np shape: {random_downsampled_combined_scanned_pts_np.shape}") - end_time = time.time() - #Log.info(f"downsample time: {end_time - start_time}") - data_item = { "scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3) "combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)