change config and remove online evaluation
This commit is contained in:
parent
8517255245
commit
6cdff9c83f
@ -5,5 +5,5 @@ from runners.data_spliter import DataSpliter
|
||||
class DataSplitApp:
|
||||
@staticmethod
|
||||
def start():
|
||||
DataSpliter("configs/split_dataset_config.yaml").run()
|
||||
DataSpliter("configs/server/split_dataset_config.yaml").run()
|
||||
|
@ -10,13 +10,13 @@ runner:
|
||||
root_dir: "experiments"
|
||||
|
||||
split:
|
||||
root_dir: "../data/sample_for_training/scenes"
|
||||
root_dir: "../data/sample_for_training_preprocessed/sample_preprocessed_scenes"
|
||||
type: "unseen_instance" # "unseen_category"
|
||||
datasets:
|
||||
OmniObject3d_train:
|
||||
path: "../data/sample_for_training/OmniObject3d_train.txt"
|
||||
path: "../data/sample_for_training_preprocessed/OmniObject3d_train.txt"
|
||||
ratio: 0.9
|
||||
|
||||
OmniObject3d_test:
|
||||
path: "../data/sample_for_training/OmniObject3d_test.txt"
|
||||
path: "../data/sample_for_training_preprocessed/OmniObject3d_test.txt"
|
||||
ratio: 0.1
|
@ -1,19 +1,19 @@
|
||||
|
||||
runner:
|
||||
general:
|
||||
seed: 1
|
||||
seed: 0
|
||||
device: cuda
|
||||
cuda_visible_devices: "0,1,2,3,4,5,6,7"
|
||||
parallel: False
|
||||
|
||||
experiment:
|
||||
name: new_test_overfit_to_world
|
||||
name: new_test_overfit_to_world_preprocessed
|
||||
root_dir: "experiments"
|
||||
use_checkpoint: True
|
||||
use_checkpoint: False
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
max_epochs: 5000
|
||||
save_checkpoint_interval: 3
|
||||
test_first: False
|
||||
test_first: True
|
||||
|
||||
train:
|
||||
optimizer:
|
||||
@ -31,10 +31,10 @@ runner:
|
||||
|
||||
dataset:
|
||||
OmniObject3d_train:
|
||||
root_dir: "../data/sample_for_training/scenes"
|
||||
root_dir: "../data/sample_for_training_preprocessed/sample_preprocessed_scenes"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "../data/sample_for_training/OmniObject3d_train.txt"
|
||||
split_file: "../data/sample_for_training_preprocessed/OmniObject3d_train.txt"
|
||||
type: train
|
||||
cache: True
|
||||
ratio: 1
|
||||
@ -44,10 +44,10 @@ dataset:
|
||||
load_from_preprocess: True
|
||||
|
||||
OmniObject3d_test:
|
||||
root_dir: "../data/sample_for_training/scenes"
|
||||
root_dir: "../data/sample_for_training_preprocessed/sample_preprocessed_scenes"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "../data/sample_for_training/OmniObject3d_train.txt"
|
||||
split_file: "../data/sample_for_training_preprocessed/OmniObject3d_train.txt"
|
||||
type: test
|
||||
cache: True
|
||||
filter_degree: 75
|
||||
|
@ -161,28 +161,28 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
}
|
||||
|
||||
|
||||
if self.type == namespace.Mode.TEST:
|
||||
diag = DataLoadUtil.get_bbox_diag(self.model_dir, scene_name)
|
||||
voxel_threshold = diag*0.02
|
||||
model_points_normals = DataLoadUtil.load_points_normals(self.root_dir, scene_name)
|
||||
pts_list = []
|
||||
for view in scanned_views:
|
||||
frame_idx = view[0]
|
||||
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
|
||||
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(view_path, binocular=True)
|
||||
cam_params = DataLoadUtil.load_cam_info(view_path, binocular=True)
|
||||
sampled_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=self.filter_degree)
|
||||
pts_list.append(sampled_point_cloud)
|
||||
nL_to_world_pose = cam_params["cam_to_world"]
|
||||
nO_to_world_pose = cam_params["cam_to_world_O"]
|
||||
nO_to_nL_pose = np.dot(np.linalg.inv(nL_to_world_pose), nO_to_world_pose)
|
||||
data_item["scanned_target_pts_list"] = pts_list
|
||||
data_item["model_points_normals"] = model_points_normals
|
||||
data_item["voxel_threshold"] = voxel_threshold
|
||||
data_item["filter_degree"] = self.filter_degree
|
||||
data_item["scene_path"] = os.path.join(self.root_dir, scene_name)
|
||||
data_item["first_frame_to_world"] = np.asarray(first_frame_to_world, dtype=np.float32)
|
||||
data_item["nO_to_nL_pose"] = np.asarray(nO_to_nL_pose, dtype=np.float32)
|
||||
# if self.type == namespace.Mode.TEST:
|
||||
# diag = DataLoadUtil.get_bbox_diag(self.model_dir, scene_name)
|
||||
# voxel_threshold = diag*0.02
|
||||
# model_points_normals = DataLoadUtil.load_points_normals(self.root_dir, scene_name)
|
||||
# pts_list = []
|
||||
# for view in scanned_views:
|
||||
# frame_idx = view[0]
|
||||
# view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
|
||||
# point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(view_path, binocular=True)
|
||||
# cam_params = DataLoadUtil.load_cam_info(view_path, binocular=True)
|
||||
# sampled_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=self.filter_degree)
|
||||
# pts_list.append(sampled_point_cloud)
|
||||
# nL_to_world_pose = cam_params["cam_to_world"]
|
||||
# nO_to_world_pose = cam_params["cam_to_world_O"]
|
||||
# nO_to_nL_pose = np.dot(np.linalg.inv(nL_to_world_pose), nO_to_world_pose)
|
||||
# data_item["scanned_target_pts_list"] = pts_list
|
||||
# data_item["model_points_normals"] = model_points_normals
|
||||
# data_item["voxel_threshold"] = voxel_threshold
|
||||
# data_item["filter_degree"] = self.filter_degree
|
||||
# data_item["scene_path"] = os.path.join(self.root_dir, scene_name)
|
||||
# data_item["first_frame_to_world"] = np.asarray(first_frame_to_world, dtype=np.float32)
|
||||
# data_item["nO_to_nL_pose"] = np.asarray(nO_to_nL_pose, dtype=np.float32)
|
||||
return data_item
|
||||
|
||||
def __len__(self):
|
||||
|
Loading…
x
Reference in New Issue
Block a user