This commit is contained in:
2024-12-26 08:21:57 +00:00
9 changed files with 236 additions and 136 deletions

View File

@@ -8,7 +8,7 @@ import torch
import os
import sys
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
sys.path.append(r"/media/hofee/data/project/python/nbv_reconstruction/nbv_reconstruction")
from utils.data_load import DataLoadUtil
from utils.pose import PoseUtil
@@ -47,6 +47,8 @@ class SeqReconstructionDataset(BaseDataset):
with open(self.split_file_path, "r") as f:
for line in f:
scene_name = line.strip()
if not os.path.exists(os.path.join(self.root_dir, scene_name)):
continue
scene_name_list.append(scene_name)
return scene_name_list
@@ -55,33 +57,23 @@ class SeqReconstructionDataset(BaseDataset):
def get_datalist(self):
datalist = []
datalist = []
total = len(self.scene_name_list)
for idx, scene_name in enumerate(self.scene_name_list):
print(f"processing {scene_name} ({idx}/{total})")
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
scene_max_coverage_rate = 0
max_coverage_rate_list = []
scene_max_cr_idx = 0
for seq_idx in range(seq_num):
label_path = DataLoadUtil.get_label_path(
self.root_dir, scene_name, seq_idx
)
label_data = DataLoadUtil.load_label(label_path)
max_coverage_rate = label_data["max_coverage_rate"]
if max_coverage_rate > scene_max_coverage_rate:
scene_max_coverage_rate = max_coverage_rate
scene_max_cr_idx = seq_idx
max_coverage_rate_list.append(max_coverage_rate)
best_label_path = DataLoadUtil.get_label_path(self.root_dir, scene_name, scene_max_cr_idx)
best_label_data = DataLoadUtil.load_label(best_label_path)
first_frame = best_label_data["best_sequence"][0]
best_seq_len = len(best_label_data["best_sequence"])
frame_len = DataLoadUtil.get_scene_seq_length(self.root_dir, scene_name)
for i in range(frame_len):
path = DataLoadUtil.get_path(self.root_dir, scene_name, i)
pts = DataLoadUtil.load_from_preprocessed_pts(path, "npy")
if pts.shape[0] == 0:
continue
datalist.append({
"scene_name": scene_name,
"first_frame": first_frame,
"best_seq_len": best_seq_len,
"max_coverage_rate": scene_max_coverage_rate,
"first_frame": i,
"best_seq_len": -1,
"max_coverage_rate": 1.0,
"label_idx": scene_max_cr_idx,
})
return datalist
@@ -132,8 +124,7 @@ class SeqReconstructionDataset(BaseDataset):
scanned_n_to_world_pose,
) = ([], [], [])
view = data_item_info["first_frame"]
frame_idx = view[0]
coverage_rate = view[1]
frame_idx = view
view_path = DataLoadUtil.get_path(self.root_dir, scene_name, frame_idx)
cam_info = DataLoadUtil.load_cam_info(view_path, binocular=True)
@@ -145,7 +136,7 @@ class SeqReconstructionDataset(BaseDataset):
target_point_cloud, self.pts_num
)
scanned_views_pts.append(downsampled_target_point_cloud)
scanned_coverages_rate.append(coverage_rate)
n_to_world_6d = PoseUtil.matrix_to_rotation_6d_numpy(
np.asarray(n_to_world_pose[:3, :3])
)
@@ -162,7 +153,6 @@ class SeqReconstructionDataset(BaseDataset):
gt_pts = self.seq_combined_pts(scene_name, frame_list)
data_item = {
"first_scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
"first_scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
"first_scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
"seq_max_coverage_rate": max_coverage_rate, # Float, range(0, 1)
"best_seq_len": best_seq_len, # Int
@@ -190,9 +180,9 @@ if __name__ == "__main__":
np.random.seed(seed)
config = {
"root_dir": "/data/hofee/data/new_full_data",
"root_dir": "/media/hofee/data/data/new_testset",
"source": "seq_reconstruction_dataset",
"split_file": "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt",
"split_file": "/media/hofee/data/data/OmniObject3d_test.txt",
"load_from_preprocess": True,
"filter_degree": 75,
"num_workers": 0,
@@ -200,22 +190,16 @@ if __name__ == "__main__":
"type": namespace.Mode.TEST,
}
output_dir = "/data/hofee/trash_can/output_inference_test"
new_output_dir = "/data/hofee/inference_test"
output_dir = "/media/hofee/data/data/new_testset_output"
os.makedirs(output_dir, exist_ok=True)
os.makedirs(new_output_dir, exist_ok=True)
ds = SeqReconstructionDataset(config)
for i in tqdm(range(len(ds)), desc="processing dataset"):
output_path = os.path.join(output_dir, f"item_{i}.pkl")
if os.path.exists(output_path):
item = pickle.load(open(output_path, "rb"))
else:
item = ds.__getitem__(i)
item = ds.__getitem__(i)
for key, value in item.items():
if isinstance(value, np.ndarray):
item[key] = value.tolist()
new_output_path = os.path.join(new_output_dir, f"item_{i}.pkl")
with open(new_output_path, "wb") as f:
#import ipdb; ipdb.set_trace()
with open(output_path, "wb") as f:
pickle.dump(item, f)

View File

@@ -0,0 +1,82 @@
import numpy as np
from PytorchBoot.dataset import BaseDataset
import PytorchBoot.namespace as namespace
import PytorchBoot.stereotype as stereotype
from PytorchBoot.config import ConfigManager
from PytorchBoot.utils.log_util import Log
import pickle
import torch
import os
import sys
sys.path.append(r"C:\Document\Local Project\nbv_rec\nbv_reconstruction")
from utils.data_load import DataLoadUtil
from utils.pose import PoseUtil
from utils.pts import PtsUtil
@stereotype.dataset("seq_reconstruction_dataset_preprocessed")
class SeqReconstructionDatasetPreprocessed(BaseDataset):
def __init__(self, config):
super(SeqReconstructionDatasetPreprocessed, self).__init__(config)
self.config = config
self.root_dir = config["root_dir"]
self.real_root_dir = r"/media/hofee/data/data/new_testset"
self.item_list = os.listdir(self.root_dir)
def __getitem__(self, index):
data = pickle.load(open(os.path.join(self.root_dir, self.item_list[index]), "rb"))
data_item = {
"first_scanned_pts": np.asarray(data["first_scanned_pts"], dtype=np.float32), # Ndarray(S x Nv x 3)
"first_scanned_n_to_world_pose_9d": np.asarray(data["first_scanned_n_to_world_pose_9d"], dtype=np.float32), # Ndarray(S x 9)
"seq_max_coverage_rate": data["seq_max_coverage_rate"], # Float, range(0, 1)
"best_seq_len": data["best_seq_len"], # Int
"scene_name": data["scene_name"], # String
"gt_pts": np.asarray(data["gt_pts"], dtype=np.float32), # Ndarray(N x 3)
"scene_path": os.path.join(self.real_root_dir, data["scene_name"]), # String
"O_to_L_pose": np.asarray(data["O_to_L_pose"], dtype=np.float32),
}
return data_item
def __len__(self):
return len(self.item_list)
# -------------- Debug ---------------- #
if __name__ == "__main__":
import torch
seed = 0
torch.manual_seed(seed)
np.random.seed(seed)
'''
OmniObject3d_test:
root_dir: "H:\\AI\\Datasets\\packed_test_data"
model_dir: "H:\\AI\\Datasets\\scaled_object_meshes"
source: seq_reconstruction_dataset
split_file: "H:\\AI\\Datasets\\data_list\\OmniObject3d_test.txt"
type: test
filter_degree: 75
eval_list:
- pose_diff
- coverage_rate_increase
ratio: 0.1
batch_size: 1
num_workers: 12
pts_num: 8192
load_from_preprocess: True
'''
config = {
"root_dir": "H:\\AI\\Datasets\\packed_test_data",
"source": "seq_reconstruction_dataset",
"split_file": "H:\\AI\\Datasets\\data_list\\OmniObject3d_test.txt",
"load_from_preprocess": True,
"ratio": 1,
"filter_degree": 75,
"num_workers": 0,
"pts_num": 8192,
"type": "test",
}
ds = SeqReconstructionDataset(config)
print(len(ds))
print(ds.__getitem__(10))