diff --git a/core/nbv_dataset.py b/core/nbv_dataset.py index d47975a..6564c56 100644 --- a/core/nbv_dataset.py +++ b/core/nbv_dataset.py @@ -165,13 +165,8 @@ class NBVReconstructionDataset(BaseDataset): [best_to_world_6d, best_to_world_trans], axis=0 ) - combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0) - voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002) - random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num) - data_item = { "scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3) - "combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3) "scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1) "scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9) "best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1) @@ -203,9 +198,6 @@ class NBVReconstructionDataset(BaseDataset): collate_data["best_to_world_pose_9d"] = torch.stack( [torch.tensor(item["best_to_world_pose_9d"]) for item in batch] ) - collate_data["combined_scanned_pts"] = torch.stack( - [torch.tensor(item["combined_scanned_pts"]) for item in batch] - ) collate_data["scanned_pts_mask"] = torch.stack( [torch.tensor(item["scanned_pts_mask"]) for item in batch] ) @@ -216,7 +208,6 @@ class NBVReconstructionDataset(BaseDataset): "scanned_pts_mask", "scanned_n_to_world_pose_9d", "best_to_world_pose_9d", - "combined_scanned_pts", ]: collate_data[key] = [item[key] for item in batch] return collate_data