batchlize transfomer and add forward_train/test in pipeline
This commit is contained in:
@@ -1,4 +1,4 @@
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
@@ -24,8 +24,43 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
else:
|
||||
Log.error("Unknown mode: {}".format(mode), True)
|
||||
|
||||
def pertube_data(self, gt_delta_rot_6d):
|
||||
bs = gt_delta_rot_6d.shape[0]
|
||||
random_t = torch.rand(bs, device=self.device) * (1. - self.eps) + self.eps
|
||||
random_t = random_t.unsqueeze(-1)
|
||||
mu, std = self.view_finder.marginal_prob(gt_delta_rot_6d, random_t)
|
||||
std = std.view(-1, 1)
|
||||
z = torch.randn_like(gt_delta_rot_6d)
|
||||
perturbed_x = mu + z * std
|
||||
target_score = - z * std / (std ** 2)
|
||||
return perturbed_x, random_t, target_score, std
|
||||
|
||||
def forward_train(self, data):
|
||||
output = {}
|
||||
pts_list = data['pts_list']
|
||||
pose_list = data['pose_list']
|
||||
gt_delta_rot_6d = data["delta_rot_6d"]
|
||||
pts_feat_list = []
|
||||
pose_feat_list = []
|
||||
for pts,pose in zip(pts_list,pose_list):
|
||||
pts_feat_list.append(self.pts_encoder.encode_points(pts))
|
||||
pose_feat_list.append(self.pose_encoder.encode_pose(pose))
|
||||
seq_feat = self.seq_encoder.encode_sequence(pts_feat_list, pose_feat_list)
|
||||
''' get std '''
|
||||
perturbed_x, random_t, target_score, std = self.pertube_data(gt_delta_rot_6d)
|
||||
input_data = {
|
||||
"sampled_pose": perturbed_x,
|
||||
"t": random_t,
|
||||
"seq_feat": seq_feat,
|
||||
}
|
||||
estimated_score = self.view_finder(input_data)
|
||||
output = {
|
||||
"estimated_score": estimated_score,
|
||||
"target_score": target_score,
|
||||
"std": std
|
||||
}
|
||||
return output
|
||||
|
||||
def forward_test(self,data):
|
||||
pts_list = data['pts_list']
|
||||
pose_list = data['pose_list']
|
||||
pts_feat_list = []
|
||||
@@ -34,9 +69,10 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
pts_feat_list.append(self.pts_encoder.encode_points(pts))
|
||||
pose_feat_list.append(self.pose_encoder.encode_pose(pose))
|
||||
seq_feat = self.seq_encoder.encode_sequence(pts_feat_list, pose_feat_list)
|
||||
output['estimated_score'] = self.view_finder.next_best_view(seq_feat)
|
||||
estimated_delta_rot_6d, in_process_sample = self.view_finder.next_best_view(seq_feat)
|
||||
result = {
|
||||
"estimated_delta_rot_6d": estimated_delta_rot_6d,
|
||||
"in_process_sample": in_process_sample
|
||||
}
|
||||
return result
|
||||
|
||||
return output
|
||||
|
||||
def forward_test(self,data):
|
||||
pass
|
Reference in New Issue
Block a user