batchlize transfomer and add forward_train/test in pipeline
This commit is contained in:
@@ -16,32 +16,49 @@ class TransformerSequenceEncoder(SequenceEncoder):
|
||||
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=config['num_layers'])
|
||||
self.fc = nn.Linear(embed_dim, config['output_dim'])
|
||||
|
||||
def encode_sequence(self, pts_embedding_list, pose_embedding_list):
|
||||
combined_features = [torch.cat((pts_embed, pose_embed), dim=-1) for pts_embed, pose_embed in zip(pts_embedding_list[:-1], pose_embedding_list[:-1])]
|
||||
combined_tensor = torch.stack(combined_features)
|
||||
pos_encoding = self.positional_encoding[:, :combined_tensor.size(0), :]
|
||||
combined_tensor = combined_tensor.unsqueeze(0) + pos_encoding
|
||||
transformer_output = self.transformer_encoder(combined_tensor).squeeze(0)
|
||||
final_feature = transformer_output.mean(dim=0)
|
||||
def encode_sequence(self, pts_embedding_list_batch, pose_embedding_list_batch):
|
||||
batch_size = len(pts_embedding_list_batch)
|
||||
combined_features_batch = []
|
||||
|
||||
for i in range(batch_size):
|
||||
combined_features = [torch.cat((pts_embed, pose_embed), dim=-1)
|
||||
for pts_embed, pose_embed in zip(pts_embedding_list_batch[i][:-1], pose_embedding_list_batch[i][:-1])]
|
||||
combined_features_batch.append(torch.stack(combined_features))
|
||||
|
||||
combined_tensor = torch.stack(combined_features_batch) # Shape: [batch_size, seq_len-1, embed_dim]
|
||||
|
||||
# Adjust positional encoding to match batch size
|
||||
pos_encoding = self.positional_encoding[:, :combined_tensor.size(1), :].repeat(batch_size, 1, 1)
|
||||
combined_tensor = combined_tensor + pos_encoding
|
||||
|
||||
# Transformer encoding
|
||||
transformer_output = self.transformer_encoder(combined_tensor)
|
||||
|
||||
# Mean pooling
|
||||
final_feature = transformer_output.mean(dim=1)
|
||||
|
||||
# Fully connected layer
|
||||
final_output = self.fc(final_feature)
|
||||
|
||||
return final_output
|
||||
|
||||
if __name__ == "__main__":
|
||||
config = {
|
||||
'pts_embed_dim': 1024, # 每个点云embedding的维度
|
||||
'pose_embed_dim': 256, # 每个姿态embedding的维度
|
||||
'num_heads': 4, # 多头注意力机制的头数
|
||||
'ffn_dim': 256, # 前馈神经网络的维度
|
||||
'num_layers': 3, # Transformer 编码层数
|
||||
'max_seq_len': 10, # 最大序列长度
|
||||
'output_dim': 2048, # 输出特征维度
|
||||
'pts_embed_dim': 1024, # 每个点云embedding的维度
|
||||
'pose_embed_dim': 256, # 每个姿态embedding的维度
|
||||
'num_heads': 4, # 多头注意力机制的头数
|
||||
'ffn_dim': 256, # 前馈神经网络的维度
|
||||
'num_layers': 3, # Transformer 编码层数
|
||||
'max_seq_len': 10, # 最大序列长度
|
||||
'output_dim': 2048, # 输出特征维度
|
||||
}
|
||||
|
||||
encoder = TransformerSequenceEncoder(config)
|
||||
seq_len = 5
|
||||
pts_embedding_list = [torch.randn(config['pts_embed_dim']) for _ in range(seq_len)]
|
||||
pose_embedding_list = [torch.randn(config['pose_embed_dim']) for _ in range(seq_len)]
|
||||
output_feature = encoder.encode_sequence(pts_embedding_list, pose_embedding_list)
|
||||
batch_size = 4
|
||||
|
||||
pts_embedding_list_batch = [torch.randn(seq_len, config['pts_embed_dim']) for _ in range(batch_size)]
|
||||
pose_embedding_list_batch = [torch.randn(seq_len, config['pose_embed_dim']) for _ in range(batch_size)]
|
||||
output_feature = encoder.encode_sequence(pts_embedding_list_batch, pose_embedding_list_batch)
|
||||
print("Encoded Feature:", output_feature)
|
||||
print("Feature Shape:", output_feature.shape)
|
||||
print("Feature Shape:", output_feature.shape)
|
||||
|
Reference in New Issue
Block a user