deploy pointnet++
This commit is contained in:
Binary file not shown.
@@ -0,0 +1,162 @@
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from . import pointnet2_utils
|
||||
from . import pytorch_utils as pt_utils
|
||||
from typing import List
|
||||
|
||||
|
||||
class _PointnetSAModuleBase(nn.Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.npoint = None
|
||||
self.groupers = None
|
||||
self.mlps = None
|
||||
self.pool_method = 'max_pool'
|
||||
|
||||
def forward(self, xyz: torch.Tensor, features: torch.Tensor = None, new_xyz=None) -> (torch.Tensor, torch.Tensor):
|
||||
"""
|
||||
:param xyz: (B, N, 3) tensor of the xyz coordinates of the features
|
||||
:param features: (B, N, C) tensor of the descriptors of the the features
|
||||
:param new_xyz:
|
||||
:return:
|
||||
new_xyz: (B, npoint, 3) tensor of the new features' xyz
|
||||
new_features: (B, npoint, \sum_k(mlps[k][-1])) tensor of the new_features descriptors
|
||||
"""
|
||||
new_features_list = []
|
||||
|
||||
xyz_flipped = xyz.transpose(1, 2).contiguous()
|
||||
if new_xyz is None:
|
||||
new_xyz = pointnet2_utils.gather_operation(
|
||||
xyz_flipped,
|
||||
pointnet2_utils.furthest_point_sample(xyz, self.npoint)
|
||||
).transpose(1, 2).contiguous() if self.npoint is not None else None
|
||||
|
||||
for i in range(len(self.groupers)):
|
||||
new_features = self.groupers[i](xyz, new_xyz, features) # (B, C, npoint, nsample)
|
||||
|
||||
new_features = self.mlps[i](new_features) # (B, mlp[-1], npoint, nsample)
|
||||
|
||||
if self.pool_method == 'max_pool':
|
||||
new_features = F.max_pool2d(
|
||||
new_features, kernel_size=[1, new_features.size(3)]
|
||||
) # (B, mlp[-1], npoint, 1)
|
||||
elif self.pool_method == 'avg_pool':
|
||||
new_features = F.avg_pool2d(
|
||||
new_features, kernel_size=[1, new_features.size(3)]
|
||||
) # (B, mlp[-1], npoint, 1)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
new_features = new_features.squeeze(-1) # (B, mlp[-1], npoint)
|
||||
new_features_list.append(new_features)
|
||||
|
||||
return new_xyz, torch.cat(new_features_list, dim=1)
|
||||
|
||||
|
||||
class PointnetSAModuleMSG(_PointnetSAModuleBase):
|
||||
"""Pointnet set abstraction layer with multiscale grouping"""
|
||||
|
||||
def __init__(self, *, npoint: int, radii: List[float], nsamples: List[int], mlps: List[List[int]], bn: bool = True,
|
||||
use_xyz: bool = True, pool_method='max_pool', instance_norm=False):
|
||||
"""
|
||||
:param npoint: int
|
||||
:param radii: list of float, list of radii to group with
|
||||
:param nsamples: list of int, number of samples in each ball query
|
||||
:param mlps: list of list of int, spec of the pointnet before the global pooling for each scale
|
||||
:param bn: whether to use batchnorm
|
||||
:param use_xyz:
|
||||
:param pool_method: max_pool / avg_pool
|
||||
:param instance_norm: whether to use instance_norm
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
assert len(radii) == len(nsamples) == len(mlps)
|
||||
|
||||
self.npoint = npoint
|
||||
self.groupers = nn.ModuleList()
|
||||
self.mlps = nn.ModuleList()
|
||||
for i in range(len(radii)):
|
||||
radius = radii[i]
|
||||
nsample = nsamples[i]
|
||||
self.groupers.append(
|
||||
pointnet2_utils.QueryAndGroup(radius, nsample, use_xyz=use_xyz)
|
||||
if npoint is not None else pointnet2_utils.GroupAll(use_xyz)
|
||||
)
|
||||
mlp_spec = mlps[i]
|
||||
if use_xyz:
|
||||
mlp_spec[0] += 3
|
||||
|
||||
self.mlps.append(pt_utils.SharedMLP(mlp_spec, bn=bn, instance_norm=instance_norm))
|
||||
self.pool_method = pool_method
|
||||
|
||||
|
||||
class PointnetSAModule(PointnetSAModuleMSG):
|
||||
"""Pointnet set abstraction layer"""
|
||||
|
||||
def __init__(self, *, mlp: List[int], npoint: int = None, radius: float = None, nsample: int = None,
|
||||
bn: bool = True, use_xyz: bool = True, pool_method='max_pool', instance_norm=False):
|
||||
"""
|
||||
:param mlp: list of int, spec of the pointnet before the global max_pool
|
||||
:param npoint: int, number of features
|
||||
:param radius: float, radius of ball
|
||||
:param nsample: int, number of samples in the ball query
|
||||
:param bn: whether to use batchnorm
|
||||
:param use_xyz:
|
||||
:param pool_method: max_pool / avg_pool
|
||||
:param instance_norm: whether to use instance_norm
|
||||
"""
|
||||
super().__init__(
|
||||
mlps=[mlp], npoint=npoint, radii=[radius], nsamples=[nsample], bn=bn, use_xyz=use_xyz,
|
||||
pool_method=pool_method, instance_norm=instance_norm
|
||||
)
|
||||
|
||||
|
||||
class PointnetFPModule(nn.Module):
|
||||
r"""Propigates the features of one set to another"""
|
||||
|
||||
def __init__(self, *, mlp: List[int], bn: bool = True):
|
||||
"""
|
||||
:param mlp: list of int
|
||||
:param bn: whether to use batchnorm
|
||||
"""
|
||||
super().__init__()
|
||||
self.mlp = pt_utils.SharedMLP(mlp, bn=bn)
|
||||
|
||||
def forward(
|
||||
self, unknown: torch.Tensor, known: torch.Tensor, unknow_feats: torch.Tensor, known_feats: torch.Tensor
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
:param unknown: (B, n, 3) tensor of the xyz positions of the unknown features
|
||||
:param known: (B, m, 3) tensor of the xyz positions of the known features
|
||||
:param unknow_feats: (B, C1, n) tensor of the features to be propigated to
|
||||
:param known_feats: (B, C2, m) tensor of features to be propigated
|
||||
:return:
|
||||
new_features: (B, mlp[-1], n) tensor of the features of the unknown features
|
||||
"""
|
||||
if known is not None:
|
||||
dist, idx = pointnet2_utils.three_nn(unknown, known)
|
||||
dist_recip = 1.0 / (dist + 1e-8)
|
||||
norm = torch.sum(dist_recip, dim=2, keepdim=True)
|
||||
weight = dist_recip / norm
|
||||
|
||||
interpolated_feats = pointnet2_utils.three_interpolate(known_feats, idx, weight)
|
||||
else:
|
||||
interpolated_feats = known_feats.expand(*known_feats.size()[0:2], unknown.size(1))
|
||||
|
||||
if unknow_feats is not None:
|
||||
new_features = torch.cat([interpolated_feats, unknow_feats], dim=1) # (B, C2 + C1, n)
|
||||
else:
|
||||
new_features = interpolated_feats
|
||||
|
||||
new_features = new_features.unsqueeze(-1)
|
||||
|
||||
new_features = self.mlp(new_features)
|
||||
|
||||
return new_features.squeeze(-1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
291
modules/module_lib/pointnet2_utils/pointnet2/pointnet2_utils.py
Normal file
291
modules/module_lib/pointnet2_utils/pointnet2/pointnet2_utils.py
Normal file
@@ -0,0 +1,291 @@
|
||||
import torch
|
||||
from torch.autograd import Variable
|
||||
from torch.autograd import Function
|
||||
import torch.nn as nn
|
||||
from typing import Tuple
|
||||
import sys
|
||||
|
||||
import pointnet2_cuda as pointnet2
|
||||
|
||||
|
||||
class FurthestPointSampling(Function):
|
||||
@staticmethod
|
||||
def forward(ctx, xyz: torch.Tensor, npoint: int) -> torch.Tensor:
|
||||
"""
|
||||
Uses iterative furthest point sampling to select a set of npoint features that have the largest
|
||||
minimum distance
|
||||
:param ctx:
|
||||
:param xyz: (B, N, 3) where N > npoint
|
||||
:param npoint: int, number of features in the sampled set
|
||||
:return:
|
||||
output: (B, npoint) tensor containing the set
|
||||
"""
|
||||
assert xyz.is_contiguous()
|
||||
|
||||
B, N, _ = xyz.size()
|
||||
output = torch.cuda.IntTensor(B, npoint)
|
||||
temp = torch.cuda.FloatTensor(B, N).fill_(1e10)
|
||||
|
||||
pointnet2.furthest_point_sampling_wrapper(B, N, npoint, xyz, temp, output)
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(xyz, a=None):
|
||||
return None, None
|
||||
|
||||
|
||||
furthest_point_sample = FurthestPointSampling.apply
|
||||
|
||||
|
||||
class GatherOperation(Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
:param ctx:
|
||||
:param features: (B, C, N)
|
||||
:param idx: (B, npoint) index tensor of the features to gather
|
||||
:return:
|
||||
output: (B, C, npoint)
|
||||
"""
|
||||
assert features.is_contiguous()
|
||||
assert idx.is_contiguous()
|
||||
|
||||
B, npoint = idx.size()
|
||||
_, C, N = features.size()
|
||||
output = torch.cuda.FloatTensor(B, C, npoint)
|
||||
|
||||
pointnet2.gather_points_wrapper(B, C, N, npoint, features, idx, output)
|
||||
|
||||
ctx.for_backwards = (idx, C, N)
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_out):
|
||||
idx, C, N = ctx.for_backwards
|
||||
B, npoint = idx.size()
|
||||
|
||||
grad_features = Variable(torch.cuda.FloatTensor(B, C, N).zero_())
|
||||
grad_out_data = grad_out.data.contiguous()
|
||||
pointnet2.gather_points_grad_wrapper(B, C, N, npoint, grad_out_data, idx, grad_features.data)
|
||||
return grad_features, None
|
||||
|
||||
|
||||
gather_operation = GatherOperation.apply
|
||||
|
||||
|
||||
class ThreeNN(Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, unknown: torch.Tensor, known: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Find the three nearest neighbors of unknown in known
|
||||
:param ctx:
|
||||
:param unknown: (B, N, 3)
|
||||
:param known: (B, M, 3)
|
||||
:return:
|
||||
dist: (B, N, 3) l2 distance to the three nearest neighbors
|
||||
idx: (B, N, 3) index of 3 nearest neighbors
|
||||
"""
|
||||
assert unknown.is_contiguous()
|
||||
assert known.is_contiguous()
|
||||
|
||||
B, N, _ = unknown.size()
|
||||
m = known.size(1)
|
||||
dist2 = torch.cuda.FloatTensor(B, N, 3)
|
||||
idx = torch.cuda.IntTensor(B, N, 3)
|
||||
|
||||
pointnet2.three_nn_wrapper(B, N, m, unknown, known, dist2, idx)
|
||||
return torch.sqrt(dist2), idx
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, a=None, b=None):
|
||||
return None, None
|
||||
|
||||
|
||||
three_nn = ThreeNN.apply
|
||||
|
||||
|
||||
class ThreeInterpolate(Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, features: torch.Tensor, idx: torch.Tensor, weight: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Performs weight linear interpolation on 3 features
|
||||
:param ctx:
|
||||
:param features: (B, C, M) Features descriptors to be interpolated from
|
||||
:param idx: (B, n, 3) three nearest neighbors of the target features in features
|
||||
:param weight: (B, n, 3) weights
|
||||
:return:
|
||||
output: (B, C, N) tensor of the interpolated features
|
||||
"""
|
||||
assert features.is_contiguous()
|
||||
assert idx.is_contiguous()
|
||||
assert weight.is_contiguous()
|
||||
|
||||
B, c, m = features.size()
|
||||
n = idx.size(1)
|
||||
ctx.three_interpolate_for_backward = (idx, weight, m)
|
||||
output = torch.cuda.FloatTensor(B, c, n)
|
||||
|
||||
pointnet2.three_interpolate_wrapper(B, c, m, n, features, idx, weight, output)
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
:param ctx:
|
||||
:param grad_out: (B, C, N) tensor with gradients of outputs
|
||||
:return:
|
||||
grad_features: (B, C, M) tensor with gradients of features
|
||||
None:
|
||||
None:
|
||||
"""
|
||||
idx, weight, m = ctx.three_interpolate_for_backward
|
||||
B, c, n = grad_out.size()
|
||||
|
||||
grad_features = Variable(torch.cuda.FloatTensor(B, c, m).zero_())
|
||||
grad_out_data = grad_out.data.contiguous()
|
||||
|
||||
pointnet2.three_interpolate_grad_wrapper(B, c, n, m, grad_out_data, idx, weight, grad_features.data)
|
||||
return grad_features, None, None
|
||||
|
||||
|
||||
three_interpolate = ThreeInterpolate.apply
|
||||
|
||||
|
||||
class GroupingOperation(Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, features: torch.Tensor, idx: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
:param ctx:
|
||||
:param features: (B, C, N) tensor of features to group
|
||||
:param idx: (B, npoint, nsample) tensor containing the indicies of features to group with
|
||||
:return:
|
||||
output: (B, C, npoint, nsample) tensor
|
||||
"""
|
||||
assert features.is_contiguous()
|
||||
assert idx.is_contiguous()
|
||||
|
||||
B, nfeatures, nsample = idx.size()
|
||||
_, C, N = features.size()
|
||||
output = torch.cuda.FloatTensor(B, C, nfeatures, nsample)
|
||||
|
||||
pointnet2.group_points_wrapper(B, C, N, nfeatures, nsample, features, idx, output)
|
||||
|
||||
ctx.for_backwards = (idx, N)
|
||||
return output
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
:param ctx:
|
||||
:param grad_out: (B, C, npoint, nsample) tensor of the gradients of the output from forward
|
||||
:return:
|
||||
grad_features: (B, C, N) gradient of the features
|
||||
"""
|
||||
idx, N = ctx.for_backwards
|
||||
|
||||
B, C, npoint, nsample = grad_out.size()
|
||||
grad_features = Variable(torch.cuda.FloatTensor(B, C, N).zero_())
|
||||
|
||||
grad_out_data = grad_out.data.contiguous()
|
||||
pointnet2.group_points_grad_wrapper(B, C, N, npoint, nsample, grad_out_data, idx, grad_features.data)
|
||||
return grad_features, None
|
||||
|
||||
|
||||
grouping_operation = GroupingOperation.apply
|
||||
|
||||
|
||||
class BallQuery(Function):
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, radius: float, nsample: int, xyz: torch.Tensor, new_xyz: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
:param ctx:
|
||||
:param radius: float, radius of the balls
|
||||
:param nsample: int, maximum number of features in the balls
|
||||
:param xyz: (B, N, 3) xyz coordinates of the features
|
||||
:param new_xyz: (B, npoint, 3) centers of the ball query
|
||||
:return:
|
||||
idx: (B, npoint, nsample) tensor with the indicies of the features that form the query balls
|
||||
"""
|
||||
assert new_xyz.is_contiguous()
|
||||
assert xyz.is_contiguous()
|
||||
|
||||
B, N, _ = xyz.size()
|
||||
npoint = new_xyz.size(1)
|
||||
idx = torch.cuda.IntTensor(B, npoint, nsample).zero_()
|
||||
|
||||
pointnet2.ball_query_wrapper(B, N, npoint, radius, nsample, new_xyz, xyz, idx)
|
||||
return idx
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, a=None):
|
||||
return None, None, None, None
|
||||
|
||||
|
||||
ball_query = BallQuery.apply
|
||||
|
||||
|
||||
class QueryAndGroup(nn.Module):
|
||||
def __init__(self, radius: float, nsample: int, use_xyz: bool = True):
|
||||
"""
|
||||
:param radius: float, radius of ball
|
||||
:param nsample: int, maximum number of features to gather in the ball
|
||||
:param use_xyz:
|
||||
"""
|
||||
super().__init__()
|
||||
self.radius, self.nsample, self.use_xyz = radius, nsample, use_xyz
|
||||
|
||||
def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor, features: torch.Tensor = None) -> Tuple[torch.Tensor]:
|
||||
"""
|
||||
:param xyz: (B, N, 3) xyz coordinates of the features
|
||||
:param new_xyz: (B, npoint, 3) centroids
|
||||
:param features: (B, C, N) descriptors of the features
|
||||
:return:
|
||||
new_features: (B, 3 + C, npoint, nsample)
|
||||
"""
|
||||
idx = ball_query(self.radius, self.nsample, xyz, new_xyz)
|
||||
xyz_trans = xyz.transpose(1, 2).contiguous()
|
||||
grouped_xyz = grouping_operation(xyz_trans, idx) # (B, 3, npoint, nsample)
|
||||
grouped_xyz -= new_xyz.transpose(1, 2).unsqueeze(-1)
|
||||
|
||||
if features is not None:
|
||||
grouped_features = grouping_operation(features, idx)
|
||||
if self.use_xyz:
|
||||
new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (B, C + 3, npoint, nsample)
|
||||
else:
|
||||
new_features = grouped_features
|
||||
else:
|
||||
assert self.use_xyz, "Cannot have not features and not use xyz as a feature!"
|
||||
new_features = grouped_xyz
|
||||
|
||||
return new_features
|
||||
|
||||
|
||||
class GroupAll(nn.Module):
|
||||
def __init__(self, use_xyz: bool = True):
|
||||
super().__init__()
|
||||
self.use_xyz = use_xyz
|
||||
|
||||
def forward(self, xyz: torch.Tensor, new_xyz: torch.Tensor, features: torch.Tensor = None):
|
||||
"""
|
||||
:param xyz: (B, N, 3) xyz coordinates of the features
|
||||
:param new_xyz: ignored
|
||||
:param features: (B, C, N) descriptors of the features
|
||||
:return:
|
||||
new_features: (B, C + 3, 1, N)
|
||||
"""
|
||||
grouped_xyz = xyz.transpose(1, 2).unsqueeze(2)
|
||||
if features is not None:
|
||||
grouped_features = features.unsqueeze(2)
|
||||
if self.use_xyz:
|
||||
new_features = torch.cat([grouped_xyz, grouped_features], dim=1) # (B, 3 + C, 1, N)
|
||||
else:
|
||||
new_features = grouped_features
|
||||
else:
|
||||
new_features = grouped_xyz
|
||||
|
||||
return new_features
|
236
modules/module_lib/pointnet2_utils/pointnet2/pytorch_utils.py
Normal file
236
modules/module_lib/pointnet2_utils/pointnet2/pytorch_utils.py
Normal file
@@ -0,0 +1,236 @@
|
||||
import torch.nn as nn
|
||||
from typing import List, Tuple
|
||||
|
||||
|
||||
class SharedMLP(nn.Sequential):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
args: List[int],
|
||||
*,
|
||||
bn: bool = False,
|
||||
activation=nn.ReLU(inplace=True),
|
||||
preact: bool = False,
|
||||
first: bool = False,
|
||||
name: str = "",
|
||||
instance_norm: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
for i in range(len(args) - 1):
|
||||
self.add_module(
|
||||
name + 'layer{}'.format(i),
|
||||
Conv2d(
|
||||
args[i],
|
||||
args[i + 1],
|
||||
bn=(not first or not preact or (i != 0)) and bn,
|
||||
activation=activation
|
||||
if (not first or not preact or (i != 0)) else None,
|
||||
preact=preact,
|
||||
instance_norm=instance_norm
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
class _ConvBase(nn.Sequential):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_size,
|
||||
out_size,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
activation,
|
||||
bn,
|
||||
init,
|
||||
conv=None,
|
||||
batch_norm=None,
|
||||
bias=True,
|
||||
preact=False,
|
||||
name="",
|
||||
instance_norm=False,
|
||||
instance_norm_func=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
bias = bias and (not bn)
|
||||
conv_unit = conv(
|
||||
in_size,
|
||||
out_size,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
bias=bias
|
||||
)
|
||||
init(conv_unit.weight)
|
||||
if bias:
|
||||
nn.init.constant_(conv_unit.bias, 0)
|
||||
|
||||
if bn:
|
||||
if not preact:
|
||||
bn_unit = batch_norm(out_size)
|
||||
else:
|
||||
bn_unit = batch_norm(in_size)
|
||||
if instance_norm:
|
||||
if not preact:
|
||||
in_unit = instance_norm_func(out_size, affine=False, track_running_stats=False)
|
||||
else:
|
||||
in_unit = instance_norm_func(in_size, affine=False, track_running_stats=False)
|
||||
|
||||
if preact:
|
||||
if bn:
|
||||
self.add_module(name + 'bn', bn_unit)
|
||||
|
||||
if activation is not None:
|
||||
self.add_module(name + 'activation', activation)
|
||||
|
||||
if not bn and instance_norm:
|
||||
self.add_module(name + 'in', in_unit)
|
||||
|
||||
self.add_module(name + 'conv', conv_unit)
|
||||
|
||||
if not preact:
|
||||
if bn:
|
||||
self.add_module(name + 'bn', bn_unit)
|
||||
|
||||
if activation is not None:
|
||||
self.add_module(name + 'activation', activation)
|
||||
|
||||
if not bn and instance_norm:
|
||||
self.add_module(name + 'in', in_unit)
|
||||
|
||||
|
||||
class _BNBase(nn.Sequential):
|
||||
|
||||
def __init__(self, in_size, batch_norm=None, name=""):
|
||||
super().__init__()
|
||||
self.add_module(name + "bn", batch_norm(in_size))
|
||||
|
||||
nn.init.constant_(self[0].weight, 1.0)
|
||||
nn.init.constant_(self[0].bias, 0)
|
||||
|
||||
|
||||
class BatchNorm1d(_BNBase):
|
||||
|
||||
def __init__(self, in_size: int, *, name: str = ""):
|
||||
super().__init__(in_size, batch_norm=nn.BatchNorm1d, name=name)
|
||||
|
||||
|
||||
class BatchNorm2d(_BNBase):
|
||||
|
||||
def __init__(self, in_size: int, name: str = ""):
|
||||
super().__init__(in_size, batch_norm=nn.BatchNorm2d, name=name)
|
||||
|
||||
|
||||
class Conv1d(_ConvBase):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_size: int,
|
||||
out_size: int,
|
||||
*,
|
||||
kernel_size: int = 1,
|
||||
stride: int = 1,
|
||||
padding: int = 0,
|
||||
activation=nn.ReLU(inplace=True),
|
||||
bn: bool = False,
|
||||
init=nn.init.kaiming_normal_,
|
||||
bias: bool = True,
|
||||
preact: bool = False,
|
||||
name: str = "",
|
||||
instance_norm=False
|
||||
):
|
||||
super().__init__(
|
||||
in_size,
|
||||
out_size,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
activation,
|
||||
bn,
|
||||
init,
|
||||
conv=nn.Conv1d,
|
||||
batch_norm=BatchNorm1d,
|
||||
bias=bias,
|
||||
preact=preact,
|
||||
name=name,
|
||||
instance_norm=instance_norm,
|
||||
instance_norm_func=nn.InstanceNorm1d
|
||||
)
|
||||
|
||||
|
||||
class Conv2d(_ConvBase):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_size: int,
|
||||
out_size: int,
|
||||
*,
|
||||
kernel_size: Tuple[int, int] = (1, 1),
|
||||
stride: Tuple[int, int] = (1, 1),
|
||||
padding: Tuple[int, int] = (0, 0),
|
||||
activation=nn.ReLU(inplace=True),
|
||||
bn: bool = False,
|
||||
init=nn.init.kaiming_normal_,
|
||||
bias: bool = True,
|
||||
preact: bool = False,
|
||||
name: str = "",
|
||||
instance_norm=False
|
||||
):
|
||||
super().__init__(
|
||||
in_size,
|
||||
out_size,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
activation,
|
||||
bn,
|
||||
init,
|
||||
conv=nn.Conv2d,
|
||||
batch_norm=BatchNorm2d,
|
||||
bias=bias,
|
||||
preact=preact,
|
||||
name=name,
|
||||
instance_norm=instance_norm,
|
||||
instance_norm_func=nn.InstanceNorm2d
|
||||
)
|
||||
|
||||
|
||||
class FC(nn.Sequential):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_size: int,
|
||||
out_size: int,
|
||||
*,
|
||||
activation=nn.ReLU(inplace=True),
|
||||
bn: bool = False,
|
||||
init=None,
|
||||
preact: bool = False,
|
||||
name: str = ""
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
fc = nn.Linear(in_size, out_size, bias=not bn)
|
||||
if init is not None:
|
||||
init(fc.weight)
|
||||
if not bn:
|
||||
nn.init.constant(fc.bias, 0)
|
||||
|
||||
if preact:
|
||||
if bn:
|
||||
self.add_module(name + 'bn', BatchNorm1d(in_size))
|
||||
|
||||
if activation is not None:
|
||||
self.add_module(name + 'activation', activation)
|
||||
|
||||
self.add_module(name + 'fc', fc)
|
||||
|
||||
if not preact:
|
||||
if bn:
|
||||
self.add_module(name + 'bn', BatchNorm1d(out_size))
|
||||
|
||||
if activation is not None:
|
||||
self.add_module(name + 'activation', activation)
|
||||
|
23
modules/module_lib/pointnet2_utils/pointnet2/setup.py
Normal file
23
modules/module_lib/pointnet2_utils/pointnet2/setup.py
Normal file
@@ -0,0 +1,23 @@
|
||||
from setuptools import setup
|
||||
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
|
||||
|
||||
setup(
|
||||
name='pointnet2',
|
||||
ext_modules=[
|
||||
CUDAExtension('pointnet2_cuda', [
|
||||
'src/pointnet2_api.cpp',
|
||||
|
||||
'src/ball_query.cpp',
|
||||
'src/ball_query_gpu.cu',
|
||||
'src/group_points.cpp',
|
||||
'src/group_points_gpu.cu',
|
||||
'src/interpolate.cpp',
|
||||
'src/interpolate_gpu.cu',
|
||||
'src/sampling.cpp',
|
||||
'src/sampling_gpu.cu',
|
||||
],
|
||||
extra_compile_args={'cxx': ['-g'],
|
||||
'nvcc': ['-O2']})
|
||||
],
|
||||
cmdclass={'build_ext': BuildExtension}
|
||||
)
|
@@ -0,0 +1,28 @@
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <vector>
|
||||
// #include <THC/THC.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
#include "ball_query_gpu.h"
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <ATen/cuda/CUDAEvent.h>
|
||||
|
||||
// extern THCState *state;
|
||||
|
||||
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x, " must be a CUDAtensor ")
|
||||
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x, " must be contiguous ")
|
||||
#define CHECK_INPUT(x) CHECK_CUDA(x);CHECK_CONTIGUOUS(x)
|
||||
|
||||
int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
|
||||
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor) {
|
||||
CHECK_INPUT(new_xyz_tensor);
|
||||
CHECK_INPUT(xyz_tensor);
|
||||
const float *new_xyz = new_xyz_tensor.data<float>();
|
||||
const float *xyz = xyz_tensor.data<float>();
|
||||
int *idx = idx_tensor.data<int>();
|
||||
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
ball_query_kernel_launcher_fast(b, n, m, radius, nsample, new_xyz, xyz, idx, stream);
|
||||
return 1;
|
||||
}
|
@@ -0,0 +1,67 @@
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "ball_query_gpu.h"
|
||||
#include "cuda_utils.h"
|
||||
|
||||
|
||||
__global__ void ball_query_kernel_fast(int b, int n, int m, float radius, int nsample,
|
||||
const float *__restrict__ new_xyz, const float *__restrict__ xyz, int *__restrict__ idx) {
|
||||
// new_xyz: (B, M, 3)
|
||||
// xyz: (B, N, 3)
|
||||
// output:
|
||||
// idx: (B, M, nsample)
|
||||
int bs_idx = blockIdx.y;
|
||||
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (bs_idx >= b || pt_idx >= m) return;
|
||||
|
||||
new_xyz += bs_idx * m * 3 + pt_idx * 3;
|
||||
xyz += bs_idx * n * 3;
|
||||
idx += bs_idx * m * nsample + pt_idx * nsample;
|
||||
|
||||
float radius2 = radius * radius;
|
||||
float new_x = new_xyz[0];
|
||||
float new_y = new_xyz[1];
|
||||
float new_z = new_xyz[2];
|
||||
|
||||
int cnt = 0;
|
||||
for (int k = 0; k < n; ++k) {
|
||||
float x = xyz[k * 3 + 0];
|
||||
float y = xyz[k * 3 + 1];
|
||||
float z = xyz[k * 3 + 2];
|
||||
float d2 = (new_x - x) * (new_x - x) + (new_y - y) * (new_y - y) + (new_z - z) * (new_z - z);
|
||||
if (d2 < radius2){
|
||||
if (cnt == 0){
|
||||
for (int l = 0; l < nsample; ++l) {
|
||||
idx[l] = k;
|
||||
}
|
||||
}
|
||||
idx[cnt] = k;
|
||||
++cnt;
|
||||
if (cnt >= nsample) break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void ball_query_kernel_launcher_fast(int b, int n, int m, float radius, int nsample, \
|
||||
const float *new_xyz, const float *xyz, int *idx, cudaStream_t stream) {
|
||||
// new_xyz: (B, M, 3)
|
||||
// xyz: (B, N, 3)
|
||||
// output:
|
||||
// idx: (B, M, nsample)
|
||||
|
||||
cudaError_t err;
|
||||
|
||||
dim3 blocks(DIVUP(m, THREADS_PER_BLOCK), b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
|
||||
ball_query_kernel_fast<<<blocks, threads, 0, stream>>>(b, n, m, radius, nsample, new_xyz, xyz, idx);
|
||||
// cudaDeviceSynchronize(); // for using printf in kernel function
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
@@ -0,0 +1,15 @@
|
||||
#ifndef _BALL_QUERY_GPU_H
|
||||
#define _BALL_QUERY_GPU_H
|
||||
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <vector>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
|
||||
int ball_query_wrapper_fast(int b, int n, int m, float radius, int nsample,
|
||||
at::Tensor new_xyz_tensor, at::Tensor xyz_tensor, at::Tensor idx_tensor);
|
||||
|
||||
void ball_query_kernel_launcher_fast(int b, int n, int m, float radius, int nsample,
|
||||
const float *xyz, const float *new_xyz, int *idx, cudaStream_t stream);
|
||||
|
||||
#endif
|
@@ -0,0 +1,15 @@
|
||||
#ifndef _CUDA_UTILS_H
|
||||
#define _CUDA_UTILS_H
|
||||
|
||||
#include <cmath>
|
||||
|
||||
#define TOTAL_THREADS 1024
|
||||
#define THREADS_PER_BLOCK 256
|
||||
#define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0))
|
||||
|
||||
inline int opt_n_threads(int work_size) {
|
||||
const int pow_2 = std::log(static_cast<double>(work_size)) / std::log(2.0);
|
||||
|
||||
return max(min(1 << pow_2, TOTAL_THREADS), 1);
|
||||
}
|
||||
#endif
|
@@ -0,0 +1,37 @@
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
// #include <THC/THC.h>
|
||||
#include "group_points_gpu.h"
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <ATen/cuda/CUDAEvent.h>
|
||||
// extern THCState *state;
|
||||
|
||||
|
||||
int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
||||
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) {
|
||||
|
||||
float *grad_points = grad_points_tensor.data<float>();
|
||||
const int *idx = idx_tensor.data<int>();
|
||||
const float *grad_out = grad_out_tensor.data<float>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
group_points_grad_kernel_launcher_fast(b, c, n, npoints, nsample, grad_out, idx, grad_points, stream);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
||||
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor) {
|
||||
|
||||
const float *points = points_tensor.data<float>();
|
||||
const int *idx = idx_tensor.data<int>();
|
||||
float *out = out_tensor.data<float>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
group_points_kernel_launcher_fast(b, c, n, npoints, nsample, points, idx, out, stream);
|
||||
return 1;
|
||||
}
|
@@ -0,0 +1,86 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "cuda_utils.h"
|
||||
#include "group_points_gpu.h"
|
||||
|
||||
|
||||
__global__ void group_points_grad_kernel_fast(int b, int c, int n, int npoints, int nsample,
|
||||
const float *__restrict__ grad_out, const int *__restrict__ idx, float *__restrict__ grad_points) {
|
||||
// grad_out: (B, C, npoints, nsample)
|
||||
// idx: (B, npoints, nsample)
|
||||
// output:
|
||||
// grad_points: (B, C, N)
|
||||
int bs_idx = blockIdx.z;
|
||||
int c_idx = blockIdx.y;
|
||||
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int pt_idx = index / nsample;
|
||||
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
|
||||
|
||||
int sample_idx = index % nsample;
|
||||
grad_out += bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
||||
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
||||
|
||||
atomicAdd(grad_points + bs_idx * c * n + c_idx * n + idx[0] , grad_out[0]);
|
||||
}
|
||||
|
||||
void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
||||
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream) {
|
||||
// grad_out: (B, C, npoints, nsample)
|
||||
// idx: (B, npoints, nsample)
|
||||
// output:
|
||||
// grad_points: (B, C, N)
|
||||
cudaError_t err;
|
||||
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
|
||||
group_points_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, nsample, grad_out, idx, grad_points);
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__global__ void group_points_kernel_fast(int b, int c, int n, int npoints, int nsample,
|
||||
const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
|
||||
// points: (B, C, N)
|
||||
// idx: (B, npoints, nsample)
|
||||
// output:
|
||||
// out: (B, C, npoints, nsample)
|
||||
int bs_idx = blockIdx.z;
|
||||
int c_idx = blockIdx.y;
|
||||
int index = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
int pt_idx = index / nsample;
|
||||
if (bs_idx >= b || c_idx >= c || pt_idx >= npoints) return;
|
||||
|
||||
int sample_idx = index % nsample;
|
||||
|
||||
idx += bs_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
||||
int in_idx = bs_idx * c * n + c_idx * n + idx[0];
|
||||
int out_idx = bs_idx * c * npoints * nsample + c_idx * npoints * nsample + pt_idx * nsample + sample_idx;
|
||||
|
||||
out[out_idx] = points[in_idx];
|
||||
}
|
||||
|
||||
|
||||
void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
||||
const float *points, const int *idx, float *out, cudaStream_t stream) {
|
||||
// points: (B, C, N)
|
||||
// idx: (B, npoints, nsample)
|
||||
// output:
|
||||
// out: (B, C, npoints, nsample)
|
||||
cudaError_t err;
|
||||
dim3 blocks(DIVUP(npoints * nsample, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
|
||||
group_points_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, nsample, points, idx, out);
|
||||
// cudaDeviceSynchronize(); // for using printf in kernel function
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
@@ -0,0 +1,22 @@
|
||||
#ifndef _GROUP_POINTS_GPU_H
|
||||
#define _GROUP_POINTS_GPU_H
|
||||
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
#include <vector>
|
||||
|
||||
|
||||
int group_points_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
||||
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor);
|
||||
|
||||
void group_points_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
||||
const float *points, const int *idx, float *out, cudaStream_t stream);
|
||||
|
||||
int group_points_grad_wrapper_fast(int b, int c, int n, int npoints, int nsample,
|
||||
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor);
|
||||
|
||||
void group_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints, int nsample,
|
||||
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream);
|
||||
|
||||
#endif
|
@@ -0,0 +1,59 @@
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <vector>
|
||||
// #include <THC/THC.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <ATen/cuda/CUDAEvent.h>
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
#include "interpolate_gpu.h"
|
||||
|
||||
// extern THCState *state;
|
||||
|
||||
|
||||
void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
|
||||
at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor) {
|
||||
const float *unknown = unknown_tensor.data<float>();
|
||||
const float *known = known_tensor.data<float>();
|
||||
float *dist2 = dist2_tensor.data<float>();
|
||||
int *idx = idx_tensor.data<int>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
three_nn_kernel_launcher_fast(b, n, m, unknown, known, dist2, idx, stream);
|
||||
}
|
||||
|
||||
|
||||
void three_interpolate_wrapper_fast(int b, int c, int m, int n,
|
||||
at::Tensor points_tensor,
|
||||
at::Tensor idx_tensor,
|
||||
at::Tensor weight_tensor,
|
||||
at::Tensor out_tensor) {
|
||||
|
||||
const float *points = points_tensor.data<float>();
|
||||
const float *weight = weight_tensor.data<float>();
|
||||
float *out = out_tensor.data<float>();
|
||||
const int *idx = idx_tensor.data<int>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
three_interpolate_kernel_launcher_fast(b, c, m, n, points, idx, weight, out, stream);
|
||||
}
|
||||
|
||||
void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m,
|
||||
at::Tensor grad_out_tensor,
|
||||
at::Tensor idx_tensor,
|
||||
at::Tensor weight_tensor,
|
||||
at::Tensor grad_points_tensor) {
|
||||
|
||||
const float *grad_out = grad_out_tensor.data<float>();
|
||||
const float *weight = weight_tensor.data<float>();
|
||||
float *grad_points = grad_points_tensor.data<float>();
|
||||
const int *idx = idx_tensor.data<int>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
three_interpolate_grad_kernel_launcher_fast(b, c, n, m, grad_out, idx, weight, grad_points, stream);
|
||||
}
|
@@ -0,0 +1,161 @@
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "cuda_utils.h"
|
||||
#include "interpolate_gpu.h"
|
||||
|
||||
|
||||
__global__ void three_nn_kernel_fast(int b, int n, int m, const float *__restrict__ unknown,
|
||||
const float *__restrict__ known, float *__restrict__ dist2, int *__restrict__ idx) {
|
||||
// unknown: (B, N, 3)
|
||||
// known: (B, M, 3)
|
||||
// output:
|
||||
// dist2: (B, N, 3)
|
||||
// idx: (B, N, 3)
|
||||
|
||||
int bs_idx = blockIdx.y;
|
||||
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (bs_idx >= b || pt_idx >= n) return;
|
||||
|
||||
unknown += bs_idx * n * 3 + pt_idx * 3;
|
||||
known += bs_idx * m * 3;
|
||||
dist2 += bs_idx * n * 3 + pt_idx * 3;
|
||||
idx += bs_idx * n * 3 + pt_idx * 3;
|
||||
|
||||
float ux = unknown[0];
|
||||
float uy = unknown[1];
|
||||
float uz = unknown[2];
|
||||
|
||||
double best1 = 1e40, best2 = 1e40, best3 = 1e40;
|
||||
int besti1 = 0, besti2 = 0, besti3 = 0;
|
||||
for (int k = 0; k < m; ++k) {
|
||||
float x = known[k * 3 + 0];
|
||||
float y = known[k * 3 + 1];
|
||||
float z = known[k * 3 + 2];
|
||||
float d = (ux - x) * (ux - x) + (uy - y) * (uy - y) + (uz - z) * (uz - z);
|
||||
if (d < best1) {
|
||||
best3 = best2; besti3 = besti2;
|
||||
best2 = best1; besti2 = besti1;
|
||||
best1 = d; besti1 = k;
|
||||
}
|
||||
else if (d < best2) {
|
||||
best3 = best2; besti3 = besti2;
|
||||
best2 = d; besti2 = k;
|
||||
}
|
||||
else if (d < best3) {
|
||||
best3 = d; besti3 = k;
|
||||
}
|
||||
}
|
||||
dist2[0] = best1; dist2[1] = best2; dist2[2] = best3;
|
||||
idx[0] = besti1; idx[1] = besti2; idx[2] = besti3;
|
||||
}
|
||||
|
||||
|
||||
void three_nn_kernel_launcher_fast(int b, int n, int m, const float *unknown,
|
||||
const float *known, float *dist2, int *idx, cudaStream_t stream) {
|
||||
// unknown: (B, N, 3)
|
||||
// known: (B, M, 3)
|
||||
// output:
|
||||
// dist2: (B, N, 3)
|
||||
// idx: (B, N, 3)
|
||||
|
||||
cudaError_t err;
|
||||
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
|
||||
three_nn_kernel_fast<<<blocks, threads, 0, stream>>>(b, n, m, unknown, known, dist2, idx);
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__global__ void three_interpolate_kernel_fast(int b, int c, int m, int n, const float *__restrict__ points,
|
||||
const int *__restrict__ idx, const float *__restrict__ weight, float *__restrict__ out) {
|
||||
// points: (B, C, M)
|
||||
// idx: (B, N, 3)
|
||||
// weight: (B, N, 3)
|
||||
// output:
|
||||
// out: (B, C, N)
|
||||
|
||||
int bs_idx = blockIdx.z;
|
||||
int c_idx = blockIdx.y;
|
||||
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (bs_idx >= b || c_idx >= c || pt_idx >= n) return;
|
||||
|
||||
weight += bs_idx * n * 3 + pt_idx * 3;
|
||||
points += bs_idx * c * m + c_idx * m;
|
||||
idx += bs_idx * n * 3 + pt_idx * 3;
|
||||
out += bs_idx * c * n + c_idx * n;
|
||||
|
||||
out[pt_idx] = weight[0] * points[idx[0]] + weight[1] * points[idx[1]] + weight[2] * points[idx[2]];
|
||||
}
|
||||
|
||||
void three_interpolate_kernel_launcher_fast(int b, int c, int m, int n,
|
||||
const float *points, const int *idx, const float *weight, float *out, cudaStream_t stream) {
|
||||
// points: (B, C, M)
|
||||
// idx: (B, N, 3)
|
||||
// weight: (B, N, 3)
|
||||
// output:
|
||||
// out: (B, C, N)
|
||||
|
||||
cudaError_t err;
|
||||
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
three_interpolate_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, m, n, points, idx, weight, out);
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__global__ void three_interpolate_grad_kernel_fast(int b, int c, int n, int m, const float *__restrict__ grad_out,
|
||||
const int *__restrict__ idx, const float *__restrict__ weight, float *__restrict__ grad_points) {
|
||||
// grad_out: (B, C, N)
|
||||
// weight: (B, N, 3)
|
||||
// output:
|
||||
// grad_points: (B, C, M)
|
||||
|
||||
int bs_idx = blockIdx.z;
|
||||
int c_idx = blockIdx.y;
|
||||
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
if (bs_idx >= b || c_idx >= c || pt_idx >= n) return;
|
||||
|
||||
grad_out += bs_idx * c * n + c_idx * n + pt_idx;
|
||||
weight += bs_idx * n * 3 + pt_idx * 3;
|
||||
grad_points += bs_idx * c * m + c_idx * m;
|
||||
idx += bs_idx * n * 3 + pt_idx * 3;
|
||||
|
||||
|
||||
atomicAdd(grad_points + idx[0], grad_out[0] * weight[0]);
|
||||
atomicAdd(grad_points + idx[1], grad_out[0] * weight[1]);
|
||||
atomicAdd(grad_points + idx[2], grad_out[0] * weight[2]);
|
||||
}
|
||||
|
||||
void three_interpolate_grad_kernel_launcher_fast(int b, int c, int n, int m, const float *grad_out,
|
||||
const int *idx, const float *weight, float *grad_points, cudaStream_t stream) {
|
||||
// grad_out: (B, C, N)
|
||||
// weight: (B, N, 3)
|
||||
// output:
|
||||
// grad_points: (B, C, M)
|
||||
|
||||
cudaError_t err;
|
||||
dim3 blocks(DIVUP(n, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
three_interpolate_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, m, grad_out, idx, weight, grad_points);
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
@@ -0,0 +1,30 @@
|
||||
#ifndef _INTERPOLATE_GPU_H
|
||||
#define _INTERPOLATE_GPU_H
|
||||
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include<vector>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime_api.h>
|
||||
|
||||
|
||||
void three_nn_wrapper_fast(int b, int n, int m, at::Tensor unknown_tensor,
|
||||
at::Tensor known_tensor, at::Tensor dist2_tensor, at::Tensor idx_tensor);
|
||||
|
||||
void three_nn_kernel_launcher_fast(int b, int n, int m, const float *unknown,
|
||||
const float *known, float *dist2, int *idx, cudaStream_t stream);
|
||||
|
||||
|
||||
void three_interpolate_wrapper_fast(int b, int c, int m, int n, at::Tensor points_tensor,
|
||||
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor out_tensor);
|
||||
|
||||
void three_interpolate_kernel_launcher_fast(int b, int c, int m, int n,
|
||||
const float *points, const int *idx, const float *weight, float *out, cudaStream_t stream);
|
||||
|
||||
|
||||
void three_interpolate_grad_wrapper_fast(int b, int c, int n, int m, at::Tensor grad_out_tensor,
|
||||
at::Tensor idx_tensor, at::Tensor weight_tensor, at::Tensor grad_points_tensor);
|
||||
|
||||
void three_interpolate_grad_kernel_launcher_fast(int b, int c, int n, int m, const float *grad_out,
|
||||
const int *idx, const float *weight, float *grad_points, cudaStream_t stream);
|
||||
|
||||
#endif
|
@@ -0,0 +1,24 @@
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include "ball_query_gpu.h"
|
||||
#include "group_points_gpu.h"
|
||||
#include "sampling_gpu.h"
|
||||
#include "interpolate_gpu.h"
|
||||
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("ball_query_wrapper", &ball_query_wrapper_fast, "ball_query_wrapper_fast");
|
||||
|
||||
m.def("group_points_wrapper", &group_points_wrapper_fast, "group_points_wrapper_fast");
|
||||
m.def("group_points_grad_wrapper", &group_points_grad_wrapper_fast, "group_points_grad_wrapper_fast");
|
||||
|
||||
m.def("gather_points_wrapper", &gather_points_wrapper_fast, "gather_points_wrapper_fast");
|
||||
m.def("gather_points_grad_wrapper", &gather_points_grad_wrapper_fast, "gather_points_grad_wrapper_fast");
|
||||
|
||||
m.def("furthest_point_sampling_wrapper", &furthest_point_sampling_wrapper, "furthest_point_sampling_wrapper");
|
||||
|
||||
m.def("three_nn_wrapper", &three_nn_wrapper_fast, "three_nn_wrapper_fast");
|
||||
m.def("three_interpolate_wrapper", &three_interpolate_wrapper_fast, "three_interpolate_wrapper_fast");
|
||||
m.def("three_interpolate_grad_wrapper", &three_interpolate_grad_wrapper_fast, "three_interpolate_grad_wrapper_fast");
|
||||
}
|
@@ -0,0 +1,51 @@
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <vector>
|
||||
// #include <THC/THC.h>
|
||||
|
||||
#include "sampling_gpu.h"
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include <ATen/cuda/CUDAEvent.h>
|
||||
|
||||
// extern THCState *state;
|
||||
|
||||
|
||||
int gather_points_wrapper_fast(int b, int c, int n, int npoints,
|
||||
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor){
|
||||
const float *points = points_tensor.data<float>();
|
||||
const int *idx = idx_tensor.data<int>();
|
||||
float *out = out_tensor.data<float>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
gather_points_kernel_launcher_fast(b, c, n, npoints, points, idx, out, stream);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
int gather_points_grad_wrapper_fast(int b, int c, int n, int npoints,
|
||||
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor) {
|
||||
|
||||
const float *grad_out = grad_out_tensor.data<float>();
|
||||
const int *idx = idx_tensor.data<int>();
|
||||
float *grad_points = grad_points_tensor.data<float>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
gather_points_grad_kernel_launcher_fast(b, c, n, npoints, grad_out, idx, grad_points, stream);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
int furthest_point_sampling_wrapper(int b, int n, int m,
|
||||
at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor) {
|
||||
|
||||
const float *points = points_tensor.data<float>();
|
||||
float *temp = temp_tensor.data<float>();
|
||||
int *idx = idx_tensor.data<int>();
|
||||
|
||||
// cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
||||
furthest_point_sampling_kernel_launcher(b, n, m, points, temp, idx, stream);
|
||||
return 1;
|
||||
}
|
253
modules/module_lib/pointnet2_utils/pointnet2/src/sampling_gpu.cu
Normal file
253
modules/module_lib/pointnet2_utils/pointnet2/src/sampling_gpu.cu
Normal file
@@ -0,0 +1,253 @@
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "cuda_utils.h"
|
||||
#include "sampling_gpu.h"
|
||||
|
||||
|
||||
__global__ void gather_points_kernel_fast(int b, int c, int n, int m,
|
||||
const float *__restrict__ points, const int *__restrict__ idx, float *__restrict__ out) {
|
||||
// points: (B, C, N)
|
||||
// idx: (B, M)
|
||||
// output:
|
||||
// out: (B, C, M)
|
||||
|
||||
int bs_idx = blockIdx.z;
|
||||
int c_idx = blockIdx.y;
|
||||
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;
|
||||
|
||||
out += bs_idx * c * m + c_idx * m + pt_idx;
|
||||
idx += bs_idx * m + pt_idx;
|
||||
points += bs_idx * c * n + c_idx * n;
|
||||
out[0] = points[idx[0]];
|
||||
}
|
||||
|
||||
void gather_points_kernel_launcher_fast(int b, int c, int n, int npoints,
|
||||
const float *points, const int *idx, float *out, cudaStream_t stream) {
|
||||
// points: (B, C, N)
|
||||
// idx: (B, npoints)
|
||||
// output:
|
||||
// out: (B, C, npoints)
|
||||
|
||||
cudaError_t err;
|
||||
dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
|
||||
gather_points_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, points, idx, out);
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void gather_points_grad_kernel_fast(int b, int c, int n, int m, const float *__restrict__ grad_out,
|
||||
const int *__restrict__ idx, float *__restrict__ grad_points) {
|
||||
// grad_out: (B, C, M)
|
||||
// idx: (B, M)
|
||||
// output:
|
||||
// grad_points: (B, C, N)
|
||||
|
||||
int bs_idx = blockIdx.z;
|
||||
int c_idx = blockIdx.y;
|
||||
int pt_idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (bs_idx >= b || c_idx >= c || pt_idx >= m) return;
|
||||
|
||||
grad_out += bs_idx * c * m + c_idx * m + pt_idx;
|
||||
idx += bs_idx * m + pt_idx;
|
||||
grad_points += bs_idx * c * n + c_idx * n;
|
||||
|
||||
atomicAdd(grad_points + idx[0], grad_out[0]);
|
||||
}
|
||||
|
||||
void gather_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints,
|
||||
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream) {
|
||||
// grad_out: (B, C, npoints)
|
||||
// idx: (B, npoints)
|
||||
// output:
|
||||
// grad_points: (B, C, N)
|
||||
|
||||
cudaError_t err;
|
||||
dim3 blocks(DIVUP(npoints, THREADS_PER_BLOCK), c, b); // blockIdx.x(col), blockIdx.y(row)
|
||||
dim3 threads(THREADS_PER_BLOCK);
|
||||
|
||||
gather_points_grad_kernel_fast<<<blocks, threads, 0, stream>>>(b, c, n, npoints, grad_out, idx, grad_points);
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__device__ void __update(float *__restrict__ dists, int *__restrict__ dists_i, int idx1, int idx2){
|
||||
const float v1 = dists[idx1], v2 = dists[idx2];
|
||||
const int i1 = dists_i[idx1], i2 = dists_i[idx2];
|
||||
dists[idx1] = max(v1, v2);
|
||||
dists_i[idx1] = v2 > v1 ? i2 : i1;
|
||||
}
|
||||
|
||||
template <unsigned int block_size>
|
||||
__global__ void furthest_point_sampling_kernel(int b, int n, int m,
|
||||
const float *__restrict__ dataset, float *__restrict__ temp, int *__restrict__ idxs) {
|
||||
// dataset: (B, N, 3)
|
||||
// tmp: (B, N)
|
||||
// output:
|
||||
// idx: (B, M)
|
||||
|
||||
if (m <= 0) return;
|
||||
__shared__ float dists[block_size];
|
||||
__shared__ int dists_i[block_size];
|
||||
|
||||
int batch_index = blockIdx.x;
|
||||
dataset += batch_index * n * 3;
|
||||
temp += batch_index * n;
|
||||
idxs += batch_index * m;
|
||||
|
||||
int tid = threadIdx.x;
|
||||
const int stride = block_size;
|
||||
|
||||
int old = 0;
|
||||
if (threadIdx.x == 0)
|
||||
idxs[0] = old;
|
||||
|
||||
__syncthreads();
|
||||
for (int j = 1; j < m; j++) {
|
||||
int besti = 0;
|
||||
float best = -1;
|
||||
float x1 = dataset[old * 3 + 0];
|
||||
float y1 = dataset[old * 3 + 1];
|
||||
float z1 = dataset[old * 3 + 2];
|
||||
for (int k = tid; k < n; k += stride) {
|
||||
float x2, y2, z2;
|
||||
x2 = dataset[k * 3 + 0];
|
||||
y2 = dataset[k * 3 + 1];
|
||||
z2 = dataset[k * 3 + 2];
|
||||
// float mag = (x2 * x2) + (y2 * y2) + (z2 * z2);
|
||||
// if (mag <= 1e-3)
|
||||
// continue;
|
||||
|
||||
float d = (x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1) + (z2 - z1) * (z2 - z1);
|
||||
float d2 = min(d, temp[k]);
|
||||
temp[k] = d2;
|
||||
besti = d2 > best ? k : besti;
|
||||
best = d2 > best ? d2 : best;
|
||||
}
|
||||
dists[tid] = best;
|
||||
dists_i[tid] = besti;
|
||||
__syncthreads();
|
||||
|
||||
if (block_size >= 1024) {
|
||||
if (tid < 512) {
|
||||
__update(dists, dists_i, tid, tid + 512);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (block_size >= 512) {
|
||||
if (tid < 256) {
|
||||
__update(dists, dists_i, tid, tid + 256);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 256) {
|
||||
if (tid < 128) {
|
||||
__update(dists, dists_i, tid, tid + 128);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 128) {
|
||||
if (tid < 64) {
|
||||
__update(dists, dists_i, tid, tid + 64);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 64) {
|
||||
if (tid < 32) {
|
||||
__update(dists, dists_i, tid, tid + 32);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 32) {
|
||||
if (tid < 16) {
|
||||
__update(dists, dists_i, tid, tid + 16);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 16) {
|
||||
if (tid < 8) {
|
||||
__update(dists, dists_i, tid, tid + 8);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 8) {
|
||||
if (tid < 4) {
|
||||
__update(dists, dists_i, tid, tid + 4);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 4) {
|
||||
if (tid < 2) {
|
||||
__update(dists, dists_i, tid, tid + 2);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
if (block_size >= 2) {
|
||||
if (tid < 1) {
|
||||
__update(dists, dists_i, tid, tid + 1);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
old = dists_i[0];
|
||||
if (tid == 0)
|
||||
idxs[j] = old;
|
||||
}
|
||||
}
|
||||
|
||||
void furthest_point_sampling_kernel_launcher(int b, int n, int m,
|
||||
const float *dataset, float *temp, int *idxs, cudaStream_t stream) {
|
||||
// dataset: (B, N, 3)
|
||||
// tmp: (B, N)
|
||||
// output:
|
||||
// idx: (B, M)
|
||||
|
||||
cudaError_t err;
|
||||
unsigned int n_threads = opt_n_threads(n);
|
||||
|
||||
switch (n_threads) {
|
||||
case 1024:
|
||||
furthest_point_sampling_kernel<1024><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 512:
|
||||
furthest_point_sampling_kernel<512><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 256:
|
||||
furthest_point_sampling_kernel<256><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 128:
|
||||
furthest_point_sampling_kernel<128><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 64:
|
||||
furthest_point_sampling_kernel<64><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 32:
|
||||
furthest_point_sampling_kernel<32><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 16:
|
||||
furthest_point_sampling_kernel<16><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 8:
|
||||
furthest_point_sampling_kernel<8><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 4:
|
||||
furthest_point_sampling_kernel<4><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 2:
|
||||
furthest_point_sampling_kernel<2><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
case 1:
|
||||
furthest_point_sampling_kernel<1><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs); break;
|
||||
default:
|
||||
furthest_point_sampling_kernel<512><<<b, n_threads, 0, stream>>>(b, n, m, dataset, temp, idxs);
|
||||
}
|
||||
|
||||
err = cudaGetLastError();
|
||||
if (cudaSuccess != err) {
|
||||
fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
|
||||
exit(-1);
|
||||
}
|
||||
}
|
@@ -0,0 +1,29 @@
|
||||
#ifndef _SAMPLING_GPU_H
|
||||
#define _SAMPLING_GPU_H
|
||||
|
||||
#include <torch/serialize/tensor.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
#include<vector>
|
||||
|
||||
|
||||
int gather_points_wrapper_fast(int b, int c, int n, int npoints,
|
||||
at::Tensor points_tensor, at::Tensor idx_tensor, at::Tensor out_tensor);
|
||||
|
||||
void gather_points_kernel_launcher_fast(int b, int c, int n, int npoints,
|
||||
const float *points, const int *idx, float *out, cudaStream_t stream);
|
||||
|
||||
|
||||
int gather_points_grad_wrapper_fast(int b, int c, int n, int npoints,
|
||||
at::Tensor grad_out_tensor, at::Tensor idx_tensor, at::Tensor grad_points_tensor);
|
||||
|
||||
void gather_points_grad_kernel_launcher_fast(int b, int c, int n, int npoints,
|
||||
const float *grad_out, const int *idx, float *grad_points, cudaStream_t stream);
|
||||
|
||||
|
||||
int furthest_point_sampling_wrapper(int b, int n, int m,
|
||||
at::Tensor points_tensor, at::Tensor temp_tensor, at::Tensor idx_tensor);
|
||||
|
||||
void furthest_point_sampling_kernel_launcher(int b, int n, int m,
|
||||
const float *dataset, float *temp, int *idxs, cudaStream_t stream);
|
||||
|
||||
#endif
|
Reference in New Issue
Block a user