add inference
This commit is contained in:
@@ -27,7 +27,7 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
|
||||
self.pts_num = config["pts_num"]
|
||||
self.type = config["type"]
|
||||
self.cache = config["cache"]
|
||||
self.cache = config.get("cache")
|
||||
if self.type == namespace.Mode.TEST:
|
||||
self.model_dir = config["model_dir"]
|
||||
self.filter_degree = config["filter_degree"]
|
||||
@@ -105,7 +105,10 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
nR_to_world_pose = cam_info["cam_to_world_R"]
|
||||
n_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), n_to_world_pose)
|
||||
nR_to_1_pose = np.dot(np.linalg.inv(first_frame_to_world), nR_to_world_pose)
|
||||
cached_data = self.load_from_cache(scene_name, first_frame_idx, frame_idx)
|
||||
|
||||
cached_data = None
|
||||
if self.cache:
|
||||
cached_data = self.load_from_cache(scene_name, first_frame_idx, frame_idx)
|
||||
|
||||
if cached_data is None:
|
||||
depth_L, depth_R = DataLoadUtil.load_depth(view_path, cam_info['near_plane'], cam_info['far_plane'], binocular=True)
|
||||
@@ -116,7 +119,8 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
point_cloud_R = PtsUtil.random_downsample_point_cloud(point_cloud_R, 65536)
|
||||
overlap_points = DataLoadUtil.get_overlapping_points(point_cloud_L, point_cloud_R)
|
||||
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(overlap_points, self.pts_num)
|
||||
self.save_to_cache(scene_name, first_frame_idx, frame_idx, downsampled_target_point_cloud)
|
||||
if self.cache:
|
||||
self.save_to_cache(scene_name, first_frame_idx, frame_idx, downsampled_target_point_cloud)
|
||||
else:
|
||||
downsampled_target_point_cloud = cached_data
|
||||
|
||||
|
@@ -1,43 +1,14 @@
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
import numpy as np
|
||||
import subprocess
|
||||
import tempfile
|
||||
from utils.data_load import DataLoadUtil
|
||||
from utils.reconstruction import ReconstructionUtil
|
||||
from utils.pose import PoseUtil
|
||||
from utils.pts import PtsUtil
|
||||
from utils.render import RenderUtil
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
import PytorchBoot.namespace as namespace
|
||||
from PytorchBoot.utils.log_util import Log
|
||||
|
||||
def render_pts(cam_pose, scene_path,script_path, model_points_normals, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None):
|
||||
nO_to_world_pose = cam_pose.cpu().numpy() @ nO_to_nL_pose
|
||||
nO_to_world_pose = DataLoadUtil.cam_pose_transformation(nO_to_world_pose)
|
||||
|
||||
|
||||
with tempfile.TemporaryDirectory() as temp_dir:
|
||||
params = {
|
||||
"cam_pose": nO_to_world_pose.tolist(),
|
||||
"scene_path": scene_path
|
||||
}
|
||||
params_data_path = os.path.join(temp_dir, "params.json")
|
||||
with open(params_data_path, 'w') as f:
|
||||
json.dump(params, f)
|
||||
result = subprocess.run([
|
||||
'blender', '-b', '-P', script_path, '--', temp_dir
|
||||
], capture_output=True, text=True)
|
||||
if result.returncode != 0:
|
||||
print("Blender script failed:")
|
||||
print(result.stderr)
|
||||
return None
|
||||
path = os.path.join(temp_dir, "tmp")
|
||||
|
||||
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
|
||||
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
sampled_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree)
|
||||
return sampled_point_cloud
|
||||
|
||||
|
||||
@stereotype.evaluation_method("pose_diff")
|
||||
class PoseDiff:
|
||||
@@ -110,7 +81,7 @@ class ConverageRateIncrease:
|
||||
filter_degree = filter_degree_list[idx]
|
||||
nO_to_nL_pose = nO_to_nL_pose_batch[idx]
|
||||
try:
|
||||
new_pts = render_pts(pred_pose, scene_path, self.renderer_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=nO_to_nL_pose)
|
||||
new_pts, _ = RenderUtil.render_pts(pred_pose, scene_path, self.renderer_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=nO_to_nL_pose)
|
||||
pred_cr = self.compute_coverage_rate(scanned_view_pts, new_pts, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
except Exception as e:
|
||||
Log.warning(f"Error in scene {scene_path}, {e}")
|
||||
|
@@ -5,7 +5,7 @@ import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.factory.component_factory import ComponentFactory
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
@stereotype.pipeline("nbv_reconstruction_pipeline", comment="should be tested")
|
||||
@stereotype.pipeline("nbv_reconstruction_pipeline")
|
||||
class NBVReconstructionPipeline(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionPipeline, self).__init__()
|
||||
@@ -67,14 +67,13 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
def get_seq_feat(self, data):
|
||||
scanned_pts_batch = data['scanned_pts']
|
||||
scanned_n_to_1_pose_9d_batch = data['scanned_n_to_1_pose_9d']
|
||||
best_to_1_pose_9d_batch = data["best_to_1_pose_9d"]
|
||||
pts_feat_seq_list = []
|
||||
pose_feat_seq_list = []
|
||||
|
||||
device = next(self.parameters()).device
|
||||
for scanned_pts,scanned_n_to_1_pose_9d in zip(scanned_pts_batch,scanned_n_to_1_pose_9d_batch):
|
||||
|
||||
scanned_pts = scanned_pts.to(best_to_1_pose_9d_batch.device)
|
||||
scanned_n_to_1_pose_9d = scanned_n_to_1_pose_9d.to(best_to_1_pose_9d_batch.device)
|
||||
|
||||
scanned_pts = scanned_pts.to(device)
|
||||
scanned_n_to_1_pose_9d = scanned_n_to_1_pose_9d.to(device)
|
||||
pts_feat_seq_list.append(self.pts_encoder.encode_points(scanned_pts))
|
||||
pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_1_pose_9d))
|
||||
|
||||
|
@@ -51,7 +51,7 @@ class SeqNBVReconstructionDataset(BaseDataset):
|
||||
"first_frame": first_frame,
|
||||
"max_coverage_rate": max_coverage_rate
|
||||
})
|
||||
return datalist
|
||||
return datalist[5:]
|
||||
|
||||
def __getitem__(self, index):
|
||||
data_item_info = self.datalist[index]
|
||||
@@ -85,6 +85,7 @@ class SeqNBVReconstructionDataset(BaseDataset):
|
||||
voxel_threshold = diag*0.02
|
||||
first_O_to_first_L_pose = np.dot(np.linalg.inv(first_left_cam_pose), first_center_cam_pose)
|
||||
scene_path = os.path.join(self.root_dir, scene_name)
|
||||
model_points_normals = DataLoadUtil.load_points_normals(self.root_dir, scene_name)
|
||||
data_item = {
|
||||
"first_pts": np.asarray([first_downsampled_target_point_cloud],dtype=np.float32),
|
||||
"first_to_first_9d": np.asarray([first_to_first_9d],dtype=np.float32),
|
||||
@@ -92,10 +93,11 @@ class SeqNBVReconstructionDataset(BaseDataset):
|
||||
"max_coverage_rate": max_coverage_rate,
|
||||
"voxel_threshold": voxel_threshold,
|
||||
"filter_degree": self.filter_degree,
|
||||
"first_frame_to_world": first_frame_to_world,
|
||||
"first_O_to_first_L_pose": first_O_to_first_L_pose,
|
||||
"first_frame_to_world": np.asarray(first_frame_to_world, dtype=np.float32),
|
||||
"O_to_L_pose": first_O_to_first_L_pose,
|
||||
"first_frame_coverage": first_frame_coverage,
|
||||
"scene_path": scene_path
|
||||
"scene_path": scene_path,
|
||||
"model_points_normals": model_points_normals,
|
||||
}
|
||||
return data_item
|
||||
|
||||
|
Reference in New Issue
Block a user