add inference

This commit is contained in:
2024-09-19 00:14:26 +08:00
parent 9ec3a00fd4
commit 935069d68c
10 changed files with 302 additions and 139 deletions

View File

@@ -1,43 +1,14 @@
import torch
import os
import json
import numpy as np
import subprocess
import tempfile
from utils.data_load import DataLoadUtil
from utils.reconstruction import ReconstructionUtil
from utils.pose import PoseUtil
from utils.pts import PtsUtil
from utils.render import RenderUtil
import PytorchBoot.stereotype as stereotype
import PytorchBoot.namespace as namespace
from PytorchBoot.utils.log_util import Log
def render_pts(cam_pose, scene_path,script_path, model_points_normals, voxel_threshold=0.005, filter_degree=75, nO_to_nL_pose=None):
nO_to_world_pose = cam_pose.cpu().numpy() @ nO_to_nL_pose
nO_to_world_pose = DataLoadUtil.cam_pose_transformation(nO_to_world_pose)
with tempfile.TemporaryDirectory() as temp_dir:
params = {
"cam_pose": nO_to_world_pose.tolist(),
"scene_path": scene_path
}
params_data_path = os.path.join(temp_dir, "params.json")
with open(params_data_path, 'w') as f:
json.dump(params, f)
result = subprocess.run([
'blender', '-b', '-P', script_path, '--', temp_dir
], capture_output=True, text=True)
if result.returncode != 0:
print("Blender script failed:")
print(result.stderr)
return None
path = os.path.join(temp_dir, "tmp")
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
sampled_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=filter_degree)
return sampled_point_cloud
@stereotype.evaluation_method("pose_diff")
class PoseDiff:
@@ -110,7 +81,7 @@ class ConverageRateIncrease:
filter_degree = filter_degree_list[idx]
nO_to_nL_pose = nO_to_nL_pose_batch[idx]
try:
new_pts = render_pts(pred_pose, scene_path, self.renderer_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=nO_to_nL_pose)
new_pts, _ = RenderUtil.render_pts(pred_pose, scene_path, self.renderer_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=nO_to_nL_pose)
pred_cr = self.compute_coverage_rate(scanned_view_pts, new_pts, down_sampled_model_pts, threshold=voxel_threshold)
except Exception as e:
Log.warning(f"Error in scene {scene_path}, {e}")