add inference
This commit is contained in:
@@ -1,33 +1,35 @@
|
||||
import os
|
||||
import json
|
||||
from datetime import datetime
|
||||
from utils.render import RenderUtil
|
||||
from utils.pose import PoseUtil
|
||||
from utils.pts import PtsUtil
|
||||
from utils.reconstruction import ReconstructionUtil
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
import pickle
|
||||
|
||||
from PytorchBoot.config import ConfigManager
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.factory import ComponentFactory
|
||||
from PytorchBoot.factory import OptimizerFactory
|
||||
|
||||
from PytorchBoot.dataset import BaseDataset
|
||||
from PytorchBoot.runners.runner import Runner
|
||||
from PytorchBoot.stereotype import EXTERNAL_FRONZEN_MODULES
|
||||
from PytorchBoot.utils import Log
|
||||
from PytorchBoot.status import status_manager
|
||||
|
||||
@stereotype.runner("nbv_evaluator")
|
||||
class NextBestViewEvaluator(Runner):
|
||||
@stereotype.runner("inferencer", comment="not tested")
|
||||
class Inferencer(Runner):
|
||||
def __init__(self, config_path):
|
||||
super().__init__(config_path)
|
||||
|
||||
|
||||
self.script_path = ConfigManager.get(namespace.Stereotype.RUNNER, "blender_script_path")
|
||||
self.output_dir = ConfigManager.get(namespace.Stereotype.RUNNER, "output_dir")
|
||||
''' Pipeline '''
|
||||
self.pipeline_name = self.config[namespace.Stereotype.PIPELINE]
|
||||
self.parallel = self.config["general"]["parallel"]
|
||||
self.pipeline:torch.nn.Module = ComponentFactory.create(namespace.Stereotype.PIPELINE, self.pipeline_name)
|
||||
if self.parallel and self.device == "cuda":
|
||||
self.pipeline = torch.nn.DataParallel(self.pipeline)
|
||||
self.pipeline = self.pipeline.to(self.device)
|
||||
|
||||
''' Experiment '''
|
||||
@@ -46,55 +48,135 @@ class NextBestViewEvaluator(Runner):
|
||||
raise ValueError("Duplicate test dataset name: {}".format(test_dataset_name))
|
||||
test_set: BaseDataset = ComponentFactory.create(namespace.Stereotype.DATASET, test_dataset_name)
|
||||
self.test_set_list.append(test_set)
|
||||
|
||||
|
||||
self.print_info()
|
||||
|
||||
|
||||
def run(self):
|
||||
Log.info("Loading from epoch {}.".format(self.current_epoch))
|
||||
self.test()
|
||||
self.inference()
|
||||
Log.success("Inference finished.")
|
||||
|
||||
|
||||
def test(self):
|
||||
def inference(self):
|
||||
self.pipeline.eval()
|
||||
with torch.no_grad():
|
||||
test_set: BaseDataset
|
||||
for dataset_idx, test_set in enumerate(self.test_set_list):
|
||||
test_set_config = test_set.get_config()
|
||||
eval_list = test_set_config["eval_list"]
|
||||
ratio = test_set_config["ratio"]
|
||||
status_manager.set_progress("inference", "inferencer", f"dataset", dataset_idx, len(self.test_set_list))
|
||||
test_set_name = test_set.get_name()
|
||||
|
||||
output_list = []
|
||||
data_list = []
|
||||
test_loader = test_set.get_loader()
|
||||
|
||||
if test_loader.batch_size > 1:
|
||||
Log.error("Batch size should be 1 for inference, found {} in {}".format(test_loader.batch_size, test_set_name), terminate=True)
|
||||
|
||||
total=int(len(test_loader))
|
||||
loop = tqdm(enumerate(test_loader), total=total)
|
||||
for i, data in loop:
|
||||
status_manager.set_progress("train", "default_trainer", f"(test) Batch[{test_set_name}]", i+1, total)
|
||||
status_manager.set_progress("inference", "inferencer", f"Batch[{test_set_name}]", i+1, total)
|
||||
test_set.process_batch(data, self.device)
|
||||
data["mode"] = namespace.Mode.TEST
|
||||
output = self.pipeline(data)
|
||||
output_list.append(output)
|
||||
data_list.append(data)
|
||||
loop.set_description(
|
||||
f'Epoch [{self.current_epoch}/{self.max_epochs}] (Test: {test_set_name}, ratio={ratio})')
|
||||
result_dict = self.eval_fn(output_list, data_list, eval_list)
|
||||
|
||||
@staticmethod
|
||||
def eval_fn(output_list, data_list, eval_list):
|
||||
collected_result = {}
|
||||
for eval_method_name in eval_list:
|
||||
eval_method = ComponentFactory.create(namespace.Stereotype.EVALUATION_METHOD, eval_method_name)
|
||||
eval_results:dict = eval_method.evaluate(output_list, data_list)
|
||||
for data_type, eval_result in eval_results.items():
|
||||
if data_type not in collected_result:
|
||||
collected_result[data_type] = {}
|
||||
for name, value in eval_result.items():
|
||||
collected_result[data_type][name] = value
|
||||
status_manager.set_status("train", "default_trainer", f"[eval]{name}", value)
|
||||
output = self.predict_sequence(data)
|
||||
self.save_inference_result(output, data)
|
||||
|
||||
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
|
||||
|
||||
return collected_result
|
||||
def predict_sequence(self, data, cr_increase_threshold=0, max_iter=100):
|
||||
pred_cr_seq = []
|
||||
scene_name = data["scene_name"][0]
|
||||
Log.info(f"Processing scene: {scene_name}")
|
||||
status_manager.set_status("inference", "inferencer", "scene", scene_name)
|
||||
|
||||
''' data for rendering '''
|
||||
scene_path = data["scene_path"][0]
|
||||
O_to_L_pose = data["O_to_L_pose"][0]
|
||||
voxel_threshold = data["voxel_threshold"][0]
|
||||
filter_degree = data["filter_degree"][0]
|
||||
model_points_normals = data["model_points_normals"][0]
|
||||
model_pts = model_points_normals[:,:3]
|
||||
down_sampled_model_pts = PtsUtil.voxel_downsample_point_cloud(model_pts, voxel_threshold)
|
||||
first_frame_to_world = data["first_frame_to_world"][0]
|
||||
|
||||
''' data for inference '''
|
||||
input_data = {}
|
||||
input_data["scanned_pts"] = [data["first_pts"][0].to(self.device)]
|
||||
input_data["scanned_n_to_1_pose_9d"] = [data["first_to_first_9d"][0].to(self.device)]
|
||||
input_data["mode"] = namespace.Mode.TEST
|
||||
input_pts_N = input_data["scanned_pts"][0].shape[1]
|
||||
|
||||
|
||||
first_frame_target_pts, _ = RenderUtil.render_pts(first_frame_to_world, scene_path, self.script_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose)
|
||||
scanned_view_pts = [first_frame_target_pts]
|
||||
last_pred_cr = self.compute_coverage_rate(scanned_view_pts, None, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
|
||||
|
||||
|
||||
while len(pred_cr_seq) < max_iter:
|
||||
|
||||
output = self.pipeline(input_data)
|
||||
next_pose_9d = output["pred_pose_9d"]
|
||||
pred_pose = torch.eye(4, device=next_pose_9d.device)
|
||||
|
||||
pred_pose[:3,:3] = PoseUtil.rotation_6d_to_matrix_tensor_batch(next_pose_9d[:,:6])[0]
|
||||
pred_pose[:3,3] = next_pose_9d[0,6:]
|
||||
pred_n_to_world_pose_mat = torch.matmul(first_frame_to_world, pred_pose)
|
||||
try:
|
||||
new_target_pts_world, new_pts_world = RenderUtil.render_pts(pred_n_to_world_pose_mat, scene_path, self.script_path, model_points_normals, voxel_threshold=voxel_threshold, filter_degree=filter_degree, nO_to_nL_pose=O_to_L_pose, require_full_scene=True)
|
||||
except Exception as e:
|
||||
Log.warning(f"Error in scene {scene_path}, {e}")
|
||||
print("current pose: ", pred_pose)
|
||||
print("curr_pred_cr: ", last_pred_cr)
|
||||
continue
|
||||
|
||||
|
||||
pred_cr = self.compute_coverage_rate(scanned_view_pts, new_target_pts_world, down_sampled_model_pts, threshold=voxel_threshold)
|
||||
pred_cr_seq.append(pred_cr)
|
||||
if pred_cr >= data["max_coverage_rate"]:
|
||||
break
|
||||
if pred_cr < last_pred_cr + cr_increase_threshold:
|
||||
break
|
||||
scanned_view_pts.append(new_target_pts_world)
|
||||
down_sampled_new_pts_world = PtsUtil.random_downsample_point_cloud(new_pts_world, input_pts_N)
|
||||
new_pts_world_aug = np.hstack([down_sampled_new_pts_world, np.ones((down_sampled_new_pts_world.shape[0], 1))])
|
||||
new_pts = np.dot(np.linalg.inv(first_frame_to_world.cpu()), new_pts_world_aug.T).T[:,:3]
|
||||
|
||||
new_pts_tensor = torch.tensor(new_pts, dtype=torch.float32).unsqueeze(0).to(self.device)
|
||||
|
||||
input_data["scanned_pts"] = [torch.cat([input_data["scanned_pts"][0] , new_pts_tensor], dim=0)]
|
||||
input_data["scanned_n_to_1_pose_9d"] = [torch.cat([input_data["scanned_n_to_1_pose_9d"][0], next_pose_9d], dim=0)]
|
||||
|
||||
last_pred_cr = pred_cr
|
||||
# ------ Debug Start ------
|
||||
import ipdb;ipdb.set_trace()
|
||||
# ------ Debug End ------
|
||||
|
||||
|
||||
input_data["scanned_pts"] = input_data["scanned_pts"][0].cpu().numpy().tolist()
|
||||
input_data["scanned_n_to_1_pose_9d"] = input_data["scanned_n_to_1_pose_9d"][0].cpu().numpy().tolist()
|
||||
result = {
|
||||
"pred_pose_9d_seq": input_data["scanned_n_to_1_pose_9d"],
|
||||
"pts_seq": input_data["scanned_pts"],
|
||||
"target_pts_seq": scanned_view_pts,
|
||||
"coverage_rate_seq": pred_cr_seq,
|
||||
"max_coverage_rate": data["max_coverage_rate"],
|
||||
"pred_max_coverage_rate": max(pred_cr_seq)
|
||||
}
|
||||
return result
|
||||
|
||||
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
|
||||
if new_pts is not None:
|
||||
new_scanned_view_pts = scanned_view_pts + [new_pts]
|
||||
else:
|
||||
new_scanned_view_pts = scanned_view_pts
|
||||
combined_point_cloud = np.vstack(new_scanned_view_pts)
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
||||
return ReconstructionUtil.compute_coverage_rate(model_pts, down_sampled_combined_point_cloud, threshold)
|
||||
|
||||
|
||||
def save_inference_result(self, dataset_name, scene_name, output):
|
||||
dataset_dir = os.path.join(self.output_dir, dataset_name)
|
||||
if not os.path.exists(dataset_dir):
|
||||
os.makedirs(dataset_dir)
|
||||
pickle.dump(output, open(f"result_{scene_name}.pkl", "wb"))
|
||||
|
||||
|
||||
def get_checkpoint_path(self, is_last=False):
|
||||
return os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME,
|
||||
@@ -116,54 +198,18 @@ class NextBestViewEvaluator(Runner):
|
||||
self.current_epoch = meta["last_epoch"]
|
||||
self.current_iter = meta["last_iter"]
|
||||
|
||||
def save_checkpoint(self, is_last=False):
|
||||
self.save(self.get_checkpoint_path(is_last))
|
||||
if not is_last:
|
||||
Log.success(f"Checkpoint at epoch {self.current_epoch} saved to {self.get_checkpoint_path(is_last)}")
|
||||
else:
|
||||
meta = {
|
||||
"last_epoch": self.current_epoch,
|
||||
"last_iter": self.current_iter,
|
||||
"time": str(datetime.now())
|
||||
}
|
||||
checkpoint_root = os.path.join(self.experiment_path, namespace.Direcotry.CHECKPOINT_DIR_NAME)
|
||||
file_path = os.path.join(checkpoint_root, "meta.json")
|
||||
with open(file_path, "w") as f:
|
||||
json.dump(meta, f)
|
||||
|
||||
def load_experiment(self, backup_name=None):
|
||||
super().load_experiment(backup_name)
|
||||
if self.experiments_config["use_checkpoint"]:
|
||||
self.current_epoch = self.experiments_config["epoch"]
|
||||
self.load_checkpoint(is_last=(self.current_epoch == -1))
|
||||
self.current_epoch = self.experiments_config["epoch"]
|
||||
self.load_checkpoint(is_last=(self.current_epoch == -1))
|
||||
|
||||
def create_experiment(self, backup_name=None):
|
||||
super().create_experiment(backup_name)
|
||||
ckpt_dir = os.path.join(str(self.experiment_path), namespace.Direcotry.CHECKPOINT_DIR_NAME)
|
||||
os.makedirs(ckpt_dir)
|
||||
tensorboard_dir = os.path.join(str(self.experiment_path), namespace.Direcotry.TENSORBOARD_DIR_NAME)
|
||||
os.makedirs(tensorboard_dir)
|
||||
|
||||
|
||||
def load(self, path):
|
||||
state_dict = torch.load(path)
|
||||
if self.parallel:
|
||||
self.pipeline.module.load_state_dict(state_dict)
|
||||
else:
|
||||
self.pipeline.load_state_dict(state_dict)
|
||||
|
||||
def save(self, path):
|
||||
if self.parallel:
|
||||
state_dict = self.pipeline.module.state_dict()
|
||||
else:
|
||||
state_dict = self.pipeline.state_dict()
|
||||
|
||||
for name, module in self.pipeline.named_modules():
|
||||
if module.__class__ in EXTERNAL_FRONZEN_MODULES:
|
||||
if name in state_dict:
|
||||
del state_dict[name]
|
||||
|
||||
torch.save(state_dict, path)
|
||||
|
||||
self.pipeline.load_state_dict(state_dict)
|
||||
|
||||
def print_info(self):
|
||||
def print_dataset(dataset: BaseDataset):
|
||||
@@ -178,8 +224,6 @@ class NextBestViewEvaluator(Runner):
|
||||
Log.blue(f"{'+' + '-' * (table_size // 2)} Pipeline {'-' * (table_size // 2)}" + '+')
|
||||
Log.blue(self.pipeline)
|
||||
Log.blue(f"{'+' + '-' * (table_size // 2)} Datasets {'-' * (table_size // 2)}" + '+')
|
||||
Log.blue("train dataset: ")
|
||||
print_dataset(self.train_set)
|
||||
for i, test_set in enumerate(self.test_set_list):
|
||||
Log.blue(f"test dataset {i}: ")
|
||||
print_dataset(test_set)
|
||||
|
@@ -16,10 +16,10 @@ from utils.pts import PtsUtil
|
||||
class StrategyGenerator(Runner):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.load_experiment("generate")
|
||||
self.load_experiment("generate_strategy")
|
||||
self.status_info = {
|
||||
"status_manager": status_manager,
|
||||
"app_name": "generate",
|
||||
"app_name": "generate_strategy",
|
||||
"runner_name": "strategy_generator"
|
||||
}
|
||||
self.to_specified_dir = ConfigManager.get("runner", "generate", "to_specified_dir")
|
||||
@@ -36,7 +36,7 @@ class StrategyGenerator(Runner):
|
||||
self.save_pts = ConfigManager.get("runner","generate","save_points")
|
||||
for dataset_idx in range(len(dataset_name_list)):
|
||||
dataset_name = dataset_name_list[dataset_idx]
|
||||
status_manager.set_progress("generate", "strategy_generator", "dataset", dataset_idx, len(dataset_name_list))
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "dataset", dataset_idx, len(dataset_name_list))
|
||||
root_dir = ConfigManager.get("datasets", dataset_name, "root_dir")
|
||||
model_dir = ConfigManager.get("datasets", dataset_name, "model_dir")
|
||||
scene_name_list = os.listdir(root_dir)
|
||||
@@ -44,10 +44,10 @@ class StrategyGenerator(Runner):
|
||||
total = len(scene_name_list)
|
||||
for scene_name in scene_name_list:
|
||||
Log.info(f"({dataset_name})Processing [{cnt}/{total}]: {scene_name}")
|
||||
status_manager.set_progress("generate", "strategy_generator", "scene", cnt, total)
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "scene", cnt, total)
|
||||
diag = DataLoadUtil.get_bbox_diag(model_dir, scene_name)
|
||||
voxel_threshold = diag*0.02
|
||||
status_manager.set_status("generate", "strategy_generator", "voxel_threshold", voxel_threshold)
|
||||
status_manager.set_status("generate_strategy", "strategy_generator", "voxel_threshold", voxel_threshold)
|
||||
output_label_path = DataLoadUtil.get_label_path(root_dir, scene_name)
|
||||
if os.path.exists(output_label_path) and not self.overwrite:
|
||||
Log.info(f"Scene <{scene_name}> Already Exists, Skip")
|
||||
@@ -58,8 +58,8 @@ class StrategyGenerator(Runner):
|
||||
except Exception as e:
|
||||
Log.error(f"Scene <{scene_name}> Failed, Error: {e}")
|
||||
cnt += 1
|
||||
status_manager.set_progress("generate", "strategy_generator", "scene", total, total)
|
||||
status_manager.set_progress("generate", "strategy_generator", "dataset", len(dataset_name_list), len(dataset_name_list))
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "scene", total, total)
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "dataset", len(dataset_name_list), len(dataset_name_list))
|
||||
|
||||
def create_experiment(self, backup_name=None):
|
||||
super().create_experiment(backup_name)
|
||||
@@ -70,7 +70,7 @@ class StrategyGenerator(Runner):
|
||||
super().load_experiment(backup_name)
|
||||
|
||||
def generate_sequence(self, root, model_dir, scene_name, voxel_threshold, overlap_threshold):
|
||||
status_manager.set_status("generate", "strategy_generator", "scene", scene_name)
|
||||
status_manager.set_status("generate_strategy", "strategy_generator", "scene", scene_name)
|
||||
frame_num = DataLoadUtil.get_scene_seq_length(root, scene_name)
|
||||
model_points_normals = DataLoadUtil.load_points_normals(root, scene_name)
|
||||
model_pts = model_points_normals[:,:3]
|
||||
@@ -81,7 +81,7 @@ class StrategyGenerator(Runner):
|
||||
for frame_idx in range(frame_num):
|
||||
path = DataLoadUtil.get_path(root, scene_name, frame_idx)
|
||||
cam_params = DataLoadUtil.load_cam_info(path, binocular=True)
|
||||
status_manager.set_progress("generate", "strategy_generator", "loading frame", frame_idx, frame_num)
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_idx, frame_num)
|
||||
point_cloud = DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True)
|
||||
#display_table = None #DataLoadUtil.get_target_point_cloud_world_from_path(path, binocular=True, target_mask_label=()) #TODO
|
||||
sampled_point_cloud = ReconstructionUtil.filter_points(point_cloud, model_points_normals, cam_pose=cam_params["cam_to_world"], voxel_size=voxel_threshold, theta=self.filter_degree)
|
||||
@@ -92,7 +92,7 @@ class StrategyGenerator(Runner):
|
||||
os.makedirs(pts_dir)
|
||||
np.savetxt(os.path.join(pts_dir, f"{frame_idx}.txt"), sampled_point_cloud)
|
||||
pts_list.append(sampled_point_cloud)
|
||||
status_manager.set_progress("generate", "strategy_generator", "loading frame", frame_num, frame_num)
|
||||
status_manager.set_progress("generate_strategy", "strategy_generator", "loading frame", frame_num, frame_num)
|
||||
|
||||
limited_useful_view, _, best_combined_pts = ReconstructionUtil.compute_next_best_view_sequence_with_overlap(down_sampled_model_pts, pts_list, threshold=voxel_threshold, overlap_threshold=overlap_threshold, status_info=self.status_info)
|
||||
data_pairs = self.generate_data_pairs(limited_useful_view)
|
||||
@@ -102,7 +102,7 @@ class StrategyGenerator(Runner):
|
||||
"max_coverage_rate": limited_useful_view[-1][1]
|
||||
}
|
||||
|
||||
status_manager.set_status("generate", "strategy_generator", "max_coverage_rate", limited_useful_view[-1][1])
|
||||
status_manager.set_status("generate_strategy", "strategy_generator", "max_coverage_rate", limited_useful_view[-1][1])
|
||||
Log.success(f"Scene <{scene_name}> Finished, Max Coverage Rate: {limited_useful_view[-1][1]}, Best Sequence length: {len(limited_useful_view)}")
|
||||
|
||||
output_label_path = DataLoadUtil.get_label_path(root, scene_name)
|
||||
|
Reference in New Issue
Block a user