update reconstruction
This commit is contained in:
@@ -22,29 +22,7 @@ class ReconstructionUtil:
|
||||
else:
|
||||
overlap_rate = overlapping_points / new_point_cloud.shape[0]
|
||||
return overlap_rate
|
||||
|
||||
@staticmethod
|
||||
def combine_point_with_view_sequence(point_list, view_sequence):
|
||||
selected_views = []
|
||||
for view_index, _ in view_sequence:
|
||||
selected_views.append(point_list[view_index])
|
||||
return np.vstack(selected_views)
|
||||
|
||||
@staticmethod
|
||||
def compute_next_view_coverage_list(views, combined_point_cloud, target_point_cloud, threshold=0.01):
|
||||
best_view = None
|
||||
best_coverage_increase = -1
|
||||
current_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, combined_point_cloud, threshold)
|
||||
|
||||
for view_index, view in enumerate(views):
|
||||
candidate_views = combined_point_cloud + [view]
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(candidate_views, threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
|
||||
coverage_increase = new_coverage - current_coverage
|
||||
if coverage_increase > best_coverage_increase:
|
||||
best_coverage_increase = coverage_increase
|
||||
best_view = view_index
|
||||
return best_view, best_coverage_increase
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_new_added_points(old_combined_pts, new_pts, threshold=0.005):
|
||||
@@ -60,54 +38,70 @@ class ReconstructionUtil:
|
||||
|
||||
@staticmethod
|
||||
def compute_next_best_view_sequence_with_overlap(target_point_cloud, point_cloud_list, scan_points_indices_list, threshold=0.01, soft_overlap_threshold=0.5, hard_overlap_threshold=0.7, init_view = 0, scan_points_threshold=5, status_info=None):
|
||||
selected_views = [point_cloud_list[init_view]]
|
||||
combined_point_cloud = np.vstack(selected_views)
|
||||
selected_views = [init_view]
|
||||
combined_point_cloud = point_cloud_list[init_view]
|
||||
history_indices = [scan_points_indices_list[init_view]]
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
|
||||
|
||||
max_rec_pts = np.vstack(point_cloud_list)
|
||||
downsampled_max_rec_pts = PtsUtil.voxel_downsample_point_cloud(max_rec_pts, threshold)
|
||||
|
||||
max_rec_pts_num = downsampled_max_rec_pts.shape[0]
|
||||
max_rec_pts_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, downsampled_max_rec_pts, threshold)
|
||||
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(downsampled_max_rec_pts, combined_point_cloud, threshold)
|
||||
current_coverage = new_coverage
|
||||
remaining_views = list(range(len(point_cloud_list)))
|
||||
view_sequence = [(init_view, current_coverage)]
|
||||
cnt_processed_view = 0
|
||||
remaining_views.remove(init_view)
|
||||
|
||||
curr_rec_pts_num = combined_point_cloud.shape[0]
|
||||
|
||||
import time
|
||||
while remaining_views:
|
||||
best_view = None
|
||||
best_coverage_increase = -1
|
||||
best_combined_point_cloud = None
|
||||
|
||||
for view_index in remaining_views:
|
||||
if point_cloud_list[view_index].shape[0] == 0:
|
||||
continue
|
||||
|
||||
if selected_views:
|
||||
new_scan_points_indices = scan_points_indices_list[view_index]
|
||||
|
||||
if not ReconstructionUtil.check_scan_points_overlap(history_indices, new_scan_points_indices, scan_points_threshold):
|
||||
overlap_threshold = hard_overlap_threshold
|
||||
else:
|
||||
overlap_threshold = soft_overlap_threshold
|
||||
|
||||
combined_old_point_cloud = np.vstack(selected_views)
|
||||
down_sampled_old_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_old_point_cloud,threshold)
|
||||
down_sampled_new_view_point_cloud = PtsUtil.voxel_downsample_point_cloud(point_cloud_list[view_index],threshold)
|
||||
overlap_rate = ReconstructionUtil.compute_overlap_rate(down_sampled_new_view_point_cloud,down_sampled_old_point_cloud, threshold)
|
||||
start = time.time()
|
||||
overlap_rate = ReconstructionUtil.compute_overlap_rate(point_cloud_list[view_index],combined_point_cloud, threshold)
|
||||
end = time.time()
|
||||
# print(f"overlap_rate Time: {end-start}")
|
||||
if overlap_rate < overlap_threshold:
|
||||
continue
|
||||
|
||||
candidate_views = selected_views + [point_cloud_list[view_index]]
|
||||
combined_point_cloud = np.vstack(candidate_views)
|
||||
down_sampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(combined_point_cloud,threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(target_point_cloud, down_sampled_combined_point_cloud, threshold)
|
||||
|
||||
start = time.time()
|
||||
new_combined_point_cloud = np.vstack([combined_point_cloud, point_cloud_list[view_index]])
|
||||
new_downsampled_combined_point_cloud = PtsUtil.voxel_downsample_point_cloud(new_combined_point_cloud,threshold)
|
||||
new_coverage = ReconstructionUtil.compute_coverage_rate(downsampled_max_rec_pts, new_downsampled_combined_point_cloud, threshold)
|
||||
end = time.time()
|
||||
#print(f"compute_coverage_rate Time: {end-start}")
|
||||
coverage_increase = new_coverage - current_coverage
|
||||
if coverage_increase > best_coverage_increase:
|
||||
best_coverage_increase = coverage_increase
|
||||
best_view = view_index
|
||||
best_combined_point_cloud = new_downsampled_combined_point_cloud
|
||||
|
||||
|
||||
if best_view is not None:
|
||||
if best_coverage_increase <=3e-3:
|
||||
if best_coverage_increase <=1e-3:
|
||||
break
|
||||
selected_views.append(point_cloud_list[best_view])
|
||||
|
||||
selected_views.append(best_view)
|
||||
best_rec_pts_num = best_combined_point_cloud.shape[0]
|
||||
print(f"Current rec pts num: {curr_rec_pts_num}, Best rec pts num: {best_rec_pts_num}, Max rec pts num: {max_rec_pts_num}")
|
||||
print(f"Current coverage: {current_coverage}, Best coverage increase: {best_coverage_increase}, Max coverage: {max_rec_pts_coverage}")
|
||||
|
||||
curr_rec_pts_num = best_rec_pts_num
|
||||
combined_point_cloud = best_combined_point_cloud
|
||||
remaining_views.remove(best_view)
|
||||
history_indices.append(scan_points_indices_list[best_view])
|
||||
current_coverage += best_coverage_increase
|
||||
@@ -123,12 +117,15 @@ class ReconstructionUtil:
|
||||
|
||||
else:
|
||||
break
|
||||
# ----- Debug Trace ----- #
|
||||
import ipdb; ipdb.set_trace()
|
||||
# ------------------------ #
|
||||
if status_info is not None:
|
||||
sm = status_info["status_manager"]
|
||||
app_name = status_info["app_name"]
|
||||
runner_name = status_info["runner_name"]
|
||||
sm.set_progress(app_name, runner_name, "processed view", len(point_cloud_list), len(point_cloud_list))
|
||||
return view_sequence, remaining_views, down_sampled_combined_point_cloud
|
||||
return view_sequence, remaining_views, combined_point_cloud
|
||||
|
||||
|
||||
@staticmethod
|
||||
|
Reference in New Issue
Block a user