update
This commit is contained in:
@@ -4,11 +4,37 @@ import json
|
||||
import cv2
|
||||
import trimesh
|
||||
import torch
|
||||
import OpenEXR
|
||||
import Imath
|
||||
from utils.pts import PtsUtil
|
||||
|
||||
|
||||
class DataLoadUtil:
|
||||
TABLE_POSITION = np.asarray([0, 0, 0.8215])
|
||||
|
||||
@staticmethod
|
||||
def load_exr_image(file_path):
|
||||
# 打开 EXR 文件
|
||||
exr_file = OpenEXR.InputFile(file_path)
|
||||
|
||||
# 获取 EXR 文件的头部信息,包括尺寸
|
||||
header = exr_file.header()
|
||||
dw = header['dataWindow']
|
||||
width = dw.max.x - dw.min.x + 1
|
||||
height = dw.max.y - dw.min.y + 1
|
||||
|
||||
# 定义通道,通常法线图像是 RGB
|
||||
float_channels = ['R', 'G', 'B']
|
||||
|
||||
# 读取 EXR 文件中的每个通道并转化为浮点数数组
|
||||
img_data = []
|
||||
for channel in float_channels:
|
||||
channel_data = exr_file.channel(channel, Imath.PixelType(Imath.PixelType.FLOAT))
|
||||
img_data.append(np.frombuffer(channel_data, dtype=np.float32).reshape((height, width)))
|
||||
|
||||
# 将各通道组合成一个 (height, width, 3) 的 RGB 图像
|
||||
img = np.stack(img_data, axis=-1)
|
||||
return img
|
||||
|
||||
@staticmethod
|
||||
def get_display_table_info(root, scene_name):
|
||||
@@ -148,34 +174,31 @@ class DataLoadUtil:
|
||||
return mask_image
|
||||
|
||||
@staticmethod
|
||||
def load_normal(path, binocular=False, left_only=False):
|
||||
def load_normal(path, binocular=False, left_only=False, file_type="exr"):
|
||||
if binocular and not left_only:
|
||||
normal_path_L = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + "_L.png"
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + f"_L.{file_type}"
|
||||
)
|
||||
normal_image_L = cv2.imread(normal_path_L, cv2.IMREAD_COLOR)
|
||||
normal_image_L = cv2.cvtColor(normal_image_L, cv2.COLOR_BGR2RGB)
|
||||
normal_path_R = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + "_R.png"
|
||||
)
|
||||
normal_image_R = cv2.imread(normal_path_R, cv2.IMREAD_COLOR)
|
||||
normal_image_R = cv2.cvtColor(normal_image_R, cv2.COLOR_BGR2RGB)
|
||||
normal_image_L = DataLoadUtil.load_exr_image(normal_path_L)
|
||||
|
||||
normalized_normal_image_L = normal_image_L / 255.0 * 2.0 - 1.0
|
||||
normalized_normal_image_R = normal_image_R / 255.0 * 2.0 - 1.0
|
||||
normal_path_R = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + f"_R.{file_type}"
|
||||
)
|
||||
normal_image_R = DataLoadUtil.load_exr_image(normal_path_R)
|
||||
normalized_normal_image_L = normal_image_L * 2.0 - 1.0
|
||||
normalized_normal_image_R = normal_image_R * 2.0 - 1.0
|
||||
return normalized_normal_image_L, normalized_normal_image_R
|
||||
else:
|
||||
if binocular and left_only:
|
||||
normal_path = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + "_L.png"
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + f"_L.{file_type}"
|
||||
)
|
||||
else:
|
||||
normal_path = os.path.join(
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + ".png"
|
||||
os.path.dirname(path), "normal", os.path.basename(path) + f".{file_type}"
|
||||
)
|
||||
normal_image = cv2.imread(normal_path, cv2.IMREAD_COLOR)
|
||||
normal_image = cv2.cvtColor(normal_image, cv2.COLOR_BGR2RGB)
|
||||
normalized_normal_image = normal_image / 255.0 * 2.0 - 1.0
|
||||
normal_image = DataLoadUtil.load_exr_image(normal_path)
|
||||
normalized_normal_image = normal_image * 2.0 - 1.0
|
||||
return normalized_normal_image
|
||||
|
||||
@staticmethod
|
||||
@@ -213,11 +236,12 @@ class DataLoadUtil:
|
||||
label_data = json.load(f)
|
||||
cam_to_world = np.asarray(label_data["extrinsic"])
|
||||
cam_to_world = DataLoadUtil.cam_pose_transformation(cam_to_world)
|
||||
world_to_display_table = np.eye(4)
|
||||
world_to_display_table[:3, 3] = -DataLoadUtil.get_display_table_top(
|
||||
root_dir, scene_name
|
||||
)
|
||||
|
||||
if display_table_as_world_space_origin:
|
||||
world_to_display_table = np.eye(4)
|
||||
world_to_display_table[:3, 3] = -DataLoadUtil.get_display_table_top(
|
||||
root_dir, scene_name
|
||||
)
|
||||
cam_to_world = np.dot(world_to_display_table, cam_to_world)
|
||||
cam_intrinsic = np.asarray(label_data["intrinsic"])
|
||||
cam_info = {
|
||||
|
Reference in New Issue
Block a user