finish partial_global inference
This commit is contained in:
@@ -90,7 +90,8 @@ class Inferencer(Runner):
|
||||
output = self.predict_sequence(data)
|
||||
self.save_inference_result(test_set_name, data["scene_name"], output)
|
||||
except Exception as e:
|
||||
Log.error(f"Error in scene {scene_name}, {e}")
|
||||
print(e)
|
||||
Log.error(f"Error, {e}")
|
||||
continue
|
||||
|
||||
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
|
||||
@@ -114,7 +115,9 @@ class Inferencer(Runner):
|
||||
|
||||
''' data for inference '''
|
||||
input_data = {}
|
||||
|
||||
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)
|
||||
input_data["scanned_pts_mask"] = [torch.zeros(input_data["combined_scanned_pts"].shape[1], dtype=torch.bool).to(self.device).unsqueeze(0)]
|
||||
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
|
||||
input_data["mode"] = namespace.Mode.TEST
|
||||
input_pts_N = input_data["combined_scanned_pts"].shape[1]
|
||||
@@ -187,11 +190,30 @@ class Inferencer(Runner):
|
||||
scanned_view_pts.append(new_target_pts)
|
||||
|
||||
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
|
||||
|
||||
start_indices = [0]
|
||||
total_points = 0
|
||||
for pts in scanned_view_pts:
|
||||
total_points += pts.shape[0]
|
||||
start_indices.append(total_points)
|
||||
combined_scanned_pts = np.vstack(scanned_view_pts)
|
||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold)
|
||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N)
|
||||
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
|
||||
random_downsampled_combined_scanned_pts_np, random_downsample_idx = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N, require_idx=True)
|
||||
all_idx_unique = np.arange(len(voxel_downsampled_combined_scanned_pts_np))
|
||||
all_random_downsample_idx = all_idx_unique[random_downsample_idx]
|
||||
scanned_pts_mask = []
|
||||
for idx, start_idx in enumerate(start_indices):
|
||||
if idx == len(start_indices) - 1:
|
||||
break
|
||||
end_idx = start_indices[idx+1]
|
||||
view_inverse = inverse[start_idx:end_idx]
|
||||
view_unique_downsampled_idx = np.unique(view_inverse)
|
||||
view_unique_downsampled_idx_set = set(view_unique_downsampled_idx)
|
||||
mask = np.array([idx in view_unique_downsampled_idx_set for idx in all_random_downsample_idx])
|
||||
scanned_pts_mask.append(mask)
|
||||
|
||||
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
|
||||
#import ipdb; ipdb.set_trace()
|
||||
input_data["scanned_pts_mask"] = [torch.tensor(scanned_pts_mask, dtype=torch.bool)]
|
||||
|
||||
|
||||
last_pred_cr = pred_cr
|
||||
@@ -232,6 +254,14 @@ class Inferencer(Runner):
|
||||
|
||||
return result
|
||||
|
||||
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
||||
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||
idx_sort = np.argsort(inverse)
|
||||
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||
downsampled_points = point_cloud[idx_unique]
|
||||
return downsampled_points, inverse
|
||||
|
||||
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
|
||||
if new_pts is not None:
|
||||
new_scanned_view_pts = scanned_view_pts + [new_pts]
|
||||
|
Reference in New Issue
Block a user