finish partial_global inference

This commit is contained in:
hofee 2024-11-26 15:40:00 +08:00
parent 2c8ef20321
commit be835aded4
3 changed files with 67 additions and 14 deletions

View File

@ -6,7 +6,7 @@ runner:
cuda_visible_devices: "0,1,2,3,4,5,6,7" cuda_visible_devices: "0,1,2,3,4,5,6,7"
experiment: experiment:
name: train_ab_global_only name: train_ab_partial
root_dir: "experiments" root_dir: "experiments"
epoch: -1 # -1 stands for last epoch epoch: -1 # -1 stands for last epoch
@ -15,7 +15,7 @@ runner:
- OmniObject3d_test - OmniObject3d_test
blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py" blender_script_path: "/media/hofee/data/project/python/nbv_reconstruction/blender/data_renderer.py"
output_dir: "/media/hofee/data/data/new_inference_test_output" output_dir: "/media/hofee/data/data/new_partial_inference_test_output"
pipeline: nbv_reconstruction_pipeline pipeline: nbv_reconstruction_pipeline
voxel_size: 0.003 voxel_size: 0.003
min_new_area: 1.0 min_new_area: 1.0
@ -66,7 +66,7 @@ module:
global_feat: True global_feat: True
feature_transform: False feature_transform: False
transformer_seq_encoder: transformer_seq_encoder:
embed_dim: 256 embed_dim: 320
num_heads: 4 num_heads: 4
ffn_dim: 256 ffn_dim: 256
num_layers: 3 num_layers: 3

View File

@ -88,26 +88,49 @@ class NBVReconstructionPipeline(nn.Module):
scanned_n_to_world_pose_9d_batch = data[ scanned_n_to_world_pose_9d_batch = data[
"scanned_n_to_world_pose_9d" "scanned_n_to_world_pose_9d"
] # List(B): Tensor(S x 9) ] # List(B): Tensor(S x 9)
scanned_pts_mask_batch = data["scanned_pts_mask"] # List(B): Tensor(S x N)
device = next(self.parameters()).device device = next(self.parameters()).device
embedding_list_batch = [] embedding_list_batch = []
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3) combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
global_scanned_feat = self.pts_encoder.encode_points( global_scanned_feat, per_point_feat_batch = self.pts_encoder.encode_points(
combined_scanned_pts_batch, require_per_point_feat=False combined_scanned_pts_batch, require_per_point_feat=True
) # global_scanned_feat: Tensor(B x Dg) ) # global_scanned_feat: Tensor(B x Dg)
batch_size = len(scanned_n_to_world_pose_9d_batch)
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch: for i in range(batch_size):
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9) seq_len = len(scanned_n_to_world_pose_9d_batch[i])
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d_batch[i].to(device) # Tensor(S x 9)
scanned_pts_mask = scanned_pts_mask_batch[i] # Tensor(S x N)
per_point_feat = per_point_feat_batch[i] # Tensor(N x Dp)
partial_point_feat_seq = []
for j in range(seq_len):
partial_per_point_feat = per_point_feat[scanned_pts_mask[j]]
if partial_per_point_feat.shape[0] == 0:
partial_point_feat = torch.zeros(per_point_feat.shape[1], device=device)
else:
partial_point_feat = torch.mean(partial_per_point_feat, dim=0) # Tensor(Dp)
partial_point_feat_seq.append(partial_point_feat)
partial_point_feat_seq = torch.stack(partial_point_feat_seq, dim=0) # Tensor(S x Dp)
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp) pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
seq_embedding = pose_feat_seq
seq_embedding = torch.cat([partial_point_feat_seq, pose_feat_seq], dim=-1)
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp)) embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds) seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg)) main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
if torch.isnan(main_feat).any(): if torch.isnan(main_feat).any():
for i in range(len(main_feat)):
if torch.isnan(main_feat[i]).any():
scanned_pts_mask = scanned_pts_mask_batch[i]
Log.info(f"scanned_pts_mask shape: {scanned_pts_mask.shape}")
Log.info(f"scanned_pts_mask sum: {scanned_pts_mask.sum()}")
import ipdb
ipdb.set_trace()
Log.error("nan in main_feat", True) Log.error("nan in main_feat", True)
return main_feat return main_feat

View File

@ -90,7 +90,8 @@ class Inferencer(Runner):
output = self.predict_sequence(data) output = self.predict_sequence(data)
self.save_inference_result(test_set_name, data["scene_name"], output) self.save_inference_result(test_set_name, data["scene_name"], output)
except Exception as e: except Exception as e:
Log.error(f"Error in scene {scene_name}, {e}") print(e)
Log.error(f"Error, {e}")
continue continue
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list)) status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
@ -114,7 +115,9 @@ class Inferencer(Runner):
''' data for inference ''' ''' data for inference '''
input_data = {} input_data = {}
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0) input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)
input_data["scanned_pts_mask"] = [torch.zeros(input_data["combined_scanned_pts"].shape[1], dtype=torch.bool).to(self.device).unsqueeze(0)]
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)] input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
input_data["mode"] = namespace.Mode.TEST input_data["mode"] = namespace.Mode.TEST
input_pts_N = input_data["combined_scanned_pts"].shape[1] input_pts_N = input_data["combined_scanned_pts"].shape[1]
@ -187,11 +190,30 @@ class Inferencer(Runner):
scanned_view_pts.append(new_target_pts) scanned_view_pts.append(new_target_pts)
input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)] input_data["scanned_n_to_world_pose_9d"] = [torch.cat([input_data["scanned_n_to_world_pose_9d"][0], pred_pose_9d], dim=0)]
start_indices = [0]
total_points = 0
for pts in scanned_view_pts:
total_points += pts.shape[0]
start_indices.append(total_points)
combined_scanned_pts = np.vstack(scanned_view_pts) combined_scanned_pts = np.vstack(scanned_view_pts)
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_pts, voxel_threshold) voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_pts, voxel_threshold)
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N) random_downsampled_combined_scanned_pts_np, random_downsample_idx = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, input_pts_N, require_idx=True)
all_idx_unique = np.arange(len(voxel_downsampled_combined_scanned_pts_np))
all_random_downsample_idx = all_idx_unique[random_downsample_idx]
scanned_pts_mask = []
for idx, start_idx in enumerate(start_indices):
if idx == len(start_indices) - 1:
break
end_idx = start_indices[idx+1]
view_inverse = inverse[start_idx:end_idx]
view_unique_downsampled_idx = np.unique(view_inverse)
view_unique_downsampled_idx_set = set(view_unique_downsampled_idx)
mask = np.array([idx in view_unique_downsampled_idx_set for idx in all_random_downsample_idx])
scanned_pts_mask.append(mask)
input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device) input_data["combined_scanned_pts"] = torch.tensor(random_downsampled_combined_scanned_pts_np, dtype=torch.float32).unsqueeze(0).to(self.device)
#import ipdb; ipdb.set_trace()
input_data["scanned_pts_mask"] = [torch.tensor(scanned_pts_mask, dtype=torch.bool)]
last_pred_cr = pred_cr last_pred_cr = pred_cr
@ -232,6 +254,14 @@ class Inferencer(Runner):
return result return result
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
idx_sort = np.argsort(inverse)
idx_unique = idx_sort[np.cumsum(counts)-counts]
downsampled_points = point_cloud[idx_unique]
return downsampled_points, inverse
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005): def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
if new_pts is not None: if new_pts is not None:
new_scanned_view_pts = scanned_view_pts + [new_pts] new_scanned_view_pts = scanned_view_pts + [new_pts]