add preprocess
This commit is contained in:
40
utils/pts.py
40
utils/pts.py
@@ -18,13 +18,49 @@ class PtsUtil:
|
||||
return points_h[:, :3]
|
||||
|
||||
@staticmethod
|
||||
def random_downsample_point_cloud(point_cloud, num_points):
|
||||
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False):
|
||||
if point_cloud.shape[0] == 0:
|
||||
return point_cloud
|
||||
idx = np.random.choice(len(point_cloud), num_points, replace=True)
|
||||
if require_idx:
|
||||
return point_cloud[idx], idx
|
||||
return point_cloud[idx]
|
||||
|
||||
@staticmethod
|
||||
def random_downsample_point_cloud_tensor(point_cloud, num_points):
|
||||
idx = torch.randint(0, len(point_cloud), (num_points,))
|
||||
return point_cloud[idx]
|
||||
return point_cloud[idx]
|
||||
|
||||
@staticmethod
|
||||
def voxelize_points(points, voxel_size):
|
||||
voxel_indices = np.floor(points / voxel_size).astype(np.int32)
|
||||
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True)
|
||||
return unique_voxels
|
||||
|
||||
@staticmethod
|
||||
def get_overlapping_points(point_cloud_L, point_cloud_R, voxel_size=0.005, require_idx=False):
|
||||
voxels_L, indices_L = PtsUtil.voxelize_points(point_cloud_L, voxel_size)
|
||||
voxels_R, _ = PtsUtil.voxelize_points(point_cloud_R, voxel_size)
|
||||
|
||||
voxel_indices_L = voxels_L.view([("", voxels_L.dtype)] * 3)
|
||||
voxel_indices_R = voxels_R.view([("", voxels_R.dtype)] * 3)
|
||||
overlapping_voxels = np.intersect1d(voxel_indices_L, voxel_indices_R)
|
||||
mask_L = np.isin(
|
||||
indices_L, np.where(np.isin(voxel_indices_L, overlapping_voxels))[0]
|
||||
)
|
||||
overlapping_points = point_cloud_L[mask_L]
|
||||
if require_idx:
|
||||
return overlapping_points, mask_L
|
||||
return overlapping_points
|
||||
|
||||
@staticmethod
|
||||
def filter_points(points, normals, cam_pose, theta=75, require_idx=False):
|
||||
camera_axis = -cam_pose[:3, 2]
|
||||
normals_normalized = normals / np.linalg.norm(normals, axis=1, keepdims=True)
|
||||
cos_theta = np.dot(normals_normalized, camera_axis)
|
||||
theta_rad = np.deg2rad(theta)
|
||||
idx = cos_theta > np.cos(theta_rad)
|
||||
filtered_points= points[idx]
|
||||
if require_idx:
|
||||
return filtered_points, idx
|
||||
return filtered_points
|
Reference in New Issue
Block a user