diff --git a/app_train.py b/app_train.py index 8980dcf..071398f 100644 --- a/app_train.py +++ b/app_train.py @@ -5,4 +5,4 @@ from PytorchBoot.runners.trainer import DefaultTrainer class TrainApp: @staticmethod def start(): - DefaultTrainer("configs/train_config.yaml").run() \ No newline at end of file + DefaultTrainer("configs/server/train_config.yaml").run() \ No newline at end of file diff --git a/core/pipeline.py b/core/pipeline.py index f4dba95..2203c30 100644 --- a/core/pipeline.py +++ b/core/pipeline.py @@ -5,7 +5,7 @@ import PytorchBoot.stereotype as stereotype from PytorchBoot.factory.component_factory import ComponentFactory from PytorchBoot.utils import Log -@stereotype.pipeline("nbv_reconstruction_pipeline", comment="should be tested") +@stereotype.pipeline("nbv_reconstruction_pipeline") class NBVReconstructionPipeline(nn.Module): def __init__(self, config): super(NBVReconstructionPipeline, self).__init__() @@ -72,7 +72,6 @@ class NBVReconstructionPipeline(nn.Module): pose_feat_seq_list = [] for scanned_pts,scanned_n_to_1_pose_9d in zip(scanned_pts_batch,scanned_n_to_1_pose_9d_batch): - print(scanned_n_to_1_pose_9d.shape) scanned_pts = scanned_pts.to(best_to_1_pose_9d_batch.device) scanned_n_to_1_pose_9d = scanned_n_to_1_pose_9d.to(best_to_1_pose_9d_batch.device) pts_feat_seq_list.append(self.pts_encoder.encode_points(scanned_pts))