update fps algo and fps mask
This commit is contained in:
@@ -122,7 +122,6 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
scanned_views_pts,
|
||||
scanned_coverages_rate,
|
||||
scanned_n_to_world_pose,
|
||||
scanned_target_pts_num,
|
||||
) = ([], [], [], [])
|
||||
for view in scanned_views:
|
||||
frame_idx = view[0]
|
||||
@@ -134,7 +133,6 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
target_point_cloud = (
|
||||
DataLoadUtil.load_from_preprocessed_pts(view_path)
|
||||
)
|
||||
target_pts_num = target_point_cloud.shape[0]
|
||||
downsampled_target_point_cloud = PtsUtil.random_downsample_point_cloud(
|
||||
target_point_cloud, self.pts_num
|
||||
)
|
||||
@@ -146,7 +144,7 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
n_to_world_trans = n_to_world_pose[:3, 3]
|
||||
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
||||
scanned_n_to_world_pose.append(n_to_world_9d)
|
||||
scanned_target_pts_num.append(target_pts_num)
|
||||
|
||||
|
||||
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
||||
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
||||
@@ -162,35 +160,33 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
)
|
||||
|
||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||
fps_downsampled_combined_scanned_pts, fps_mask = PtsUtil.fps_downsample_point_cloud(
|
||||
combined_scanned_views_pts, self.pts_num, require_mask=True
|
||||
fps_downsampled_combined_scanned_pts, fps_idx = PtsUtil.fps_downsample_point_cloud(
|
||||
combined_scanned_views_pts, self.pts_num, require_idx=True
|
||||
)
|
||||
|
||||
view_start_indices = np.cumsum([0] + [pts.shape[0] for pts in scanned_views_pts[:-1]])
|
||||
scanned_pts_mask = []
|
||||
|
||||
for i, start_idx in enumerate(view_start_indices[:-1]):
|
||||
end_idx = view_start_indices[i + 1]
|
||||
view_mask = fps_mask[start_idx:end_idx]
|
||||
scanned_pts_mask.append(view_mask)
|
||||
combined_scanned_views_pts_mask = np.zeros(len(scanned_views_pts), dtype=np.uint8)
|
||||
|
||||
start_idx = 0
|
||||
for i in range(len(scanned_views_pts)):
|
||||
end_idx = start_idx + len(scanned_views_pts[i])
|
||||
combined_scanned_views_pts_mask[start_idx:end_idx] = i
|
||||
start_idx = end_idx
|
||||
|
||||
fps_downsampled_combined_scanned_pts_mask = combined_scanned_views_pts_mask[fps_idx]
|
||||
|
||||
|
||||
|
||||
|
||||
data_item = {
|
||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32),
|
||||
"scanned_pts_mask": np.asarray(scanned_pts_mask, dtype=np.uint8),
|
||||
"combined_scanned_pts": np.asarray(
|
||||
fps_downsampled_combined_scanned_pts, dtype=np.float32
|
||||
),
|
||||
"scanned_coverage_rate": scanned_coverages_rate,
|
||||
"scanned_n_to_world_pose_9d": np.asarray(
|
||||
scanned_n_to_world_pose, dtype=np.float32
|
||||
),
|
||||
"best_coverage_rate": nbv_coverage_rate,
|
||||
"best_to_world_pose_9d": np.asarray(best_to_world_9d, dtype=np.float32),
|
||||
"seq_max_coverage_rate": max_coverage_rate,
|
||||
"scene_name": scene_name,
|
||||
"scanned_target_points_num": np.asarray(
|
||||
scanned_target_pts_num, dtype=np.int32
|
||||
),
|
||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||
"scanned_pts_mask": np.asarray(fps_downsampled_combined_scanned_pts_mask,dtype=np.uint8), # Ndarray(N), range(0, S)
|
||||
"combined_scanned_pts": np.asarray(fps_downsampled_combined_scanned_pts, dtype=np.float32), # Ndarray(N x 3)
|
||||
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
||||
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
||||
"best_to_world_pose_9d": np.asarray(best_to_world_9d, dtype=np.float32), # Ndarray(9)
|
||||
"seq_max_coverage_rate": max_coverage_rate, # Float, range(0, 1)
|
||||
"scene_name": scene_name, # String
|
||||
}
|
||||
|
||||
return data_item
|
||||
@@ -201,37 +197,35 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
def get_collate_fn(self):
|
||||
def collate_fn(batch):
|
||||
collate_data = {}
|
||||
|
||||
''' ------ Varialbe Length ------ '''
|
||||
|
||||
collate_data["scanned_pts"] = [
|
||||
torch.tensor(item["scanned_pts"]) for item in batch
|
||||
]
|
||||
collate_data["scanned_pts_mask"] = [
|
||||
torch.tensor(item["scanned_pts_mask"]) for item in batch
|
||||
]
|
||||
collate_data["scanned_n_to_world_pose_9d"] = [
|
||||
torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch
|
||||
]
|
||||
collate_data["scanned_target_points_num"] = [
|
||||
torch.tensor(item["scanned_target_points_num"]) for item in batch
|
||||
]
|
||||
|
||||
''' ------ Fixed Length ------ '''
|
||||
|
||||
collate_data["best_to_world_pose_9d"] = torch.stack(
|
||||
[torch.tensor(item["best_to_world_pose_9d"]) for item in batch]
|
||||
)
|
||||
collate_data["combined_scanned_pts"] = torch.stack(
|
||||
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
||||
)
|
||||
if "first_frame_to_world" in batch[0]:
|
||||
collate_data["first_frame_to_world"] = torch.stack(
|
||||
[torch.tensor(item["first_frame_to_world"]) for item in batch]
|
||||
)
|
||||
collate_data["scanned_pts_mask"] = torch.stack(
|
||||
[torch.tensor(item["scanned_pts_mask"]) for item in batch]
|
||||
)
|
||||
|
||||
for key in batch[0].keys():
|
||||
if key not in [
|
||||
"scanned_pts",
|
||||
"scanned_pts_mask",
|
||||
"scanned_n_to_world_pose_9d",
|
||||
"best_to_world_pose_9d",
|
||||
"first_frame_to_world",
|
||||
"combined_scanned_pts",
|
||||
"scanned_target_points_num",
|
||||
]:
|
||||
collate_data[key] = [item[key] for item in batch]
|
||||
return collate_data
|
||||
|
Reference in New Issue
Block a user