Compare commits
4 Commits
ab_global_
...
ab_new_par
Author | SHA1 | Date | |
---|---|---|---|
81bf2678ac | |||
ad7a1c9cdf | |||
7c7f071f95 | |||
be835aded4 |
@@ -70,7 +70,7 @@ module:
|
||||
global_feat: True
|
||||
feature_transform: False
|
||||
transformer_seq_encoder:
|
||||
embed_dim: 256
|
||||
embed_dim: 320
|
||||
num_heads: 4
|
||||
ffn_dim: 256
|
||||
num_layers: 3
|
||||
|
@@ -3,11 +3,11 @@ runner:
|
||||
general:
|
||||
seed: 0
|
||||
device: cuda
|
||||
cuda_visible_devices: "0"
|
||||
cuda_visible_devices: "2"
|
||||
parallel: False
|
||||
|
||||
experiment:
|
||||
name: train_ab_global_only_with_wp_p++_strong
|
||||
name: newtrain_real_global_only
|
||||
root_dir: "experiments"
|
||||
use_checkpoint: False
|
||||
epoch: -1 # -1 stands for last epoch
|
||||
@@ -28,18 +28,18 @@ runner:
|
||||
- OmniObject3d_test
|
||||
- OmniObject3d_val
|
||||
|
||||
pipeline: nbv_reconstruction_pipeline
|
||||
pipeline: nbv_reconstruction_pipeline_global_only
|
||||
|
||||
dataset:
|
||||
OmniObject3d_train:
|
||||
root_dir: "/data/hofee/data/new_full_data"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
|
||||
split_file: "/data/hofee/data/new_full_data_list/new_OmniObject3d_train.txt"
|
||||
type: train
|
||||
cache: True
|
||||
ratio: 1
|
||||
batch_size: 64
|
||||
batch_size: 24
|
||||
num_workers: 128
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
@@ -48,14 +48,14 @@ dataset:
|
||||
root_dir: "/data/hofee/data/new_full_data"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt"
|
||||
split_file: "/data/hofee/data/new_full_data_list/new_OmniObject3d_test.txt"
|
||||
type: test
|
||||
cache: True
|
||||
filter_degree: 75
|
||||
eval_list:
|
||||
- pose_diff
|
||||
ratio: 1
|
||||
batch_size: 80
|
||||
batch_size: 32
|
||||
num_workers: 12
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
@@ -64,21 +64,37 @@ dataset:
|
||||
root_dir: "/data/hofee/data/new_full_data"
|
||||
model_dir: "../data/scaled_object_meshes"
|
||||
source: nbv_reconstruction_dataset
|
||||
split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
|
||||
split_file: "/data/hofee/data/new_full_data_list/new_OmniObject3d_train.txt"
|
||||
type: test
|
||||
cache: True
|
||||
filter_degree: 75
|
||||
eval_list:
|
||||
- pose_diff
|
||||
ratio: 0.1
|
||||
batch_size: 80
|
||||
batch_size: 32
|
||||
num_workers: 12
|
||||
pts_num: 8192
|
||||
load_from_preprocess: True
|
||||
|
||||
|
||||
pipeline:
|
||||
nbv_reconstruction_pipeline:
|
||||
nbv_reconstruction_pipeline_local:
|
||||
modules:
|
||||
pts_encoder: pointnet++_encoder
|
||||
seq_encoder: transformer_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
eps: 1e-5
|
||||
global_scanned_feat: True
|
||||
nbv_reconstruction_pipeline_global:
|
||||
modules:
|
||||
pts_encoder: pointnet++_encoder
|
||||
seq_encoder: transformer_seq_encoder
|
||||
pose_encoder: pose_encoder
|
||||
view_finder: gf_view_finder
|
||||
eps: 1e-5
|
||||
global_scanned_feat: True
|
||||
nbv_reconstruction_pipeline_local_only:
|
||||
modules:
|
||||
pts_encoder: pointnet++_encoder
|
||||
seq_encoder: transformer_seq_encoder
|
||||
@@ -98,10 +114,9 @@ module:
|
||||
|
||||
pointnet++_encoder:
|
||||
in_dim: 3
|
||||
params_name: strong
|
||||
|
||||
transformer_seq_encoder:
|
||||
embed_dim: 256
|
||||
embed_dim: 1280
|
||||
num_heads: 4
|
||||
ffn_dim: 256
|
||||
num_layers: 3
|
||||
@@ -110,7 +125,7 @@ module:
|
||||
gf_view_finder:
|
||||
t_feat_dim: 128
|
||||
pose_feat_dim: 256
|
||||
main_feat_dim: 5120
|
||||
main_feat_dim: 1024
|
||||
regression_head: Rx_Ry_and_T
|
||||
pose_mode: rot_matrix
|
||||
per_point_feature: False
|
||||
|
81
core/ab_global_only_pts_pipeline.py
Normal file
81
core/ab_global_only_pts_pipeline.py
Normal file
@@ -0,0 +1,81 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.factory.component_factory import ComponentFactory
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
|
||||
@stereotype.pipeline("nbv_reconstruction_pipeline_global_only")
|
||||
class NBVReconstructionGlobalPointsOnlyPipeline(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionGlobalPointsOnlyPipeline, self).__init__()
|
||||
self.config = config
|
||||
self.module_config = config["modules"]
|
||||
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
|
||||
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
|
||||
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
|
||||
self.eps = float(self.config["eps"])
|
||||
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
|
||||
if mode == namespace.Mode.TRAIN:
|
||||
return self.forward_train(data)
|
||||
elif mode == namespace.Mode.TEST:
|
||||
return self.forward_test(data)
|
||||
else:
|
||||
Log.error("Unknown mode: {}".format(mode), True)
|
||||
|
||||
def pertube_data(self, gt_delta_9d):
|
||||
bs = gt_delta_9d.shape[0]
|
||||
random_t = torch.rand(bs, device=gt_delta_9d.device) * (1. - self.eps) + self.eps
|
||||
random_t = random_t.unsqueeze(-1)
|
||||
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
|
||||
std = std.view(-1, 1)
|
||||
z = torch.randn_like(gt_delta_9d)
|
||||
perturbed_x = mu + z * std
|
||||
target_score = - z * std / (std ** 2)
|
||||
return perturbed_x, random_t, target_score, std
|
||||
|
||||
def forward_train(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
''' get std '''
|
||||
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
|
||||
input_data = {
|
||||
"sampled_pose": perturbed_x,
|
||||
"t": random_t,
|
||||
"main_feat": main_feat,
|
||||
}
|
||||
estimated_score = self.view_finder(input_data)
|
||||
output = {
|
||||
"estimated_score": estimated_score,
|
||||
"target_score": target_score,
|
||||
"std": std
|
||||
}
|
||||
return output
|
||||
|
||||
def forward_test(self,data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(main_feat)
|
||||
result = {
|
||||
"pred_pose_9d": estimated_delta_rot_9d,
|
||||
"in_process_sample": in_process_sample
|
||||
}
|
||||
return result
|
||||
|
||||
|
||||
def get_main_feat(self, data):
|
||||
|
||||
combined_scanned_pts_batch = data['combined_scanned_pts']
|
||||
global_scanned_feat = self.pts_encoder.encode_points(combined_scanned_pts_batch)
|
||||
main_feat = global_scanned_feat
|
||||
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
Log.error("nan in main_feat", True)
|
||||
|
||||
return main_feat
|
||||
|
91
core/ab_local_only_pts_pipeline.py
Normal file
91
core/ab_local_only_pts_pipeline.py
Normal file
@@ -0,0 +1,91 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.factory.component_factory import ComponentFactory
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
@stereotype.pipeline("nbv_reconstruction_pipeline_local_only")
|
||||
class NBVReconstructionLocalPointsOnlyPipeline(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionLocalPointsOnlyPipeline, self).__init__()
|
||||
self.config = config
|
||||
self.module_config = config["modules"]
|
||||
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
|
||||
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
|
||||
self.seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["seq_encoder"])
|
||||
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
|
||||
self.eps = float(self.config["eps"])
|
||||
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||
|
||||
def forward(self, data):
|
||||
mode = data["mode"]
|
||||
|
||||
if mode == namespace.Mode.TRAIN:
|
||||
return self.forward_train(data)
|
||||
elif mode == namespace.Mode.TEST:
|
||||
return self.forward_test(data)
|
||||
else:
|
||||
Log.error("Unknown mode: {}".format(mode), True)
|
||||
|
||||
def pertube_data(self, gt_delta_9d):
|
||||
bs = gt_delta_9d.shape[0]
|
||||
random_t = torch.rand(bs, device=gt_delta_9d.device) * (1. - self.eps) + self.eps
|
||||
random_t = random_t.unsqueeze(-1)
|
||||
mu, std = self.view_finder.marginal_prob(gt_delta_9d, random_t)
|
||||
std = std.view(-1, 1)
|
||||
z = torch.randn_like(gt_delta_9d)
|
||||
perturbed_x = mu + z * std
|
||||
target_score = - z * std / (std ** 2)
|
||||
return perturbed_x, random_t, target_score, std
|
||||
|
||||
def forward_train(self, data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
''' get std '''
|
||||
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
|
||||
perturbed_x, random_t, target_score, std = self.pertube_data(best_to_world_pose_9d_batch)
|
||||
input_data = {
|
||||
"sampled_pose": perturbed_x,
|
||||
"t": random_t,
|
||||
"main_feat": main_feat,
|
||||
}
|
||||
estimated_score = self.view_finder(input_data)
|
||||
output = {
|
||||
"estimated_score": estimated_score,
|
||||
"target_score": target_score,
|
||||
"std": std
|
||||
}
|
||||
return output
|
||||
|
||||
def forward_test(self,data):
|
||||
main_feat = self.get_main_feat(data)
|
||||
estimated_delta_rot_9d, in_process_sample = self.view_finder.next_best_view(main_feat)
|
||||
result = {
|
||||
"pred_pose_9d": estimated_delta_rot_9d,
|
||||
"in_process_sample": in_process_sample
|
||||
}
|
||||
return result
|
||||
|
||||
|
||||
def get_main_feat(self, data):
|
||||
scanned_pts_batch = data['scanned_pts']
|
||||
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
|
||||
device = next(self.parameters()).device
|
||||
feat_seq_list = []
|
||||
|
||||
for scanned_pts,scanned_n_to_world_pose_9d in zip(scanned_pts_batch,scanned_n_to_world_pose_9d_batch):
|
||||
|
||||
scanned_pts = scanned_pts.to(device)
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
|
||||
pts_feat = self.pts_encoder.encode_points(scanned_pts)
|
||||
pose_feat = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d)
|
||||
seq_feat = torch.cat([pts_feat, pose_feat], dim=-1)
|
||||
feat_seq_list.append(seq_feat)
|
||||
main_feat = self.seq_encoder.encode_sequence(feat_seq_list)
|
||||
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
Log.error("nan in main_feat", True)
|
||||
|
||||
return main_feat
|
||||
|
@@ -6,7 +6,7 @@ from PytorchBoot.factory.component_factory import ComponentFactory
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
|
||||
@stereotype.pipeline("nbv_reconstruction_global_pts_pipeline")
|
||||
@stereotype.pipeline("nbv_reconstruction_pipeline_global")
|
||||
class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionGlobalPointsPipeline, self).__init__()
|
||||
@@ -14,7 +14,7 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
||||
self.module_config = config["modules"]
|
||||
self.pts_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pts_encoder"])
|
||||
self.pose_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_encoder"])
|
||||
self.pose_seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["pose_seq_encoder"])
|
||||
self.seq_encoder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["seq_encoder"])
|
||||
self.view_finder = ComponentFactory.create(namespace.Stereotype.MODULE, self.module_config["view_finder"])
|
||||
self.eps = float(self.config["eps"])
|
||||
self.enable_global_scanned_feat = self.config["global_scanned_feat"]
|
||||
@@ -73,13 +73,13 @@ class NBVReconstructionGlobalPointsPipeline(nn.Module):
|
||||
|
||||
device = next(self.parameters()).device
|
||||
|
||||
pose_feat_seq_list = []
|
||||
feat_seq_list = []
|
||||
|
||||
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
|
||||
pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d))
|
||||
feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d))
|
||||
|
||||
main_feat = self.pose_seq_encoder.encode_sequence(pose_feat_seq_list)
|
||||
main_feat = self.seq_encoder.encode_sequence(feat_seq_list)
|
||||
|
||||
|
||||
combined_scanned_pts_batch = data['combined_scanned_pts']
|
||||
|
@@ -5,7 +5,7 @@ import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.factory.component_factory import ComponentFactory
|
||||
from PytorchBoot.utils import Log
|
||||
|
||||
@stereotype.pipeline("nbv_reconstruction_local_pts_pipeline")
|
||||
@stereotype.pipeline("nbv_reconstruction_pipeline_local")
|
||||
class NBVReconstructionLocalPointsPipeline(nn.Module):
|
||||
def __init__(self, config):
|
||||
super(NBVReconstructionLocalPointsPipeline, self).__init__()
|
||||
@@ -70,23 +70,18 @@ class NBVReconstructionLocalPointsPipeline(nn.Module):
|
||||
def get_main_feat(self, data):
|
||||
scanned_pts_batch = data['scanned_pts']
|
||||
scanned_n_to_world_pose_9d_batch = data['scanned_n_to_world_pose_9d']
|
||||
|
||||
|
||||
device = next(self.parameters()).device
|
||||
|
||||
|
||||
|
||||
pts_feat_seq_list = []
|
||||
pose_feat_seq_list = []
|
||||
feat_seq_list = []
|
||||
|
||||
for scanned_pts,scanned_n_to_world_pose_9d in zip(scanned_pts_batch,scanned_n_to_world_pose_9d_batch):
|
||||
|
||||
scanned_pts = scanned_pts.to(device)
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device)
|
||||
pts_feat_seq_list.append(self.pts_encoder.encode_points(scanned_pts))
|
||||
pose_feat_seq_list.append(self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d))
|
||||
|
||||
main_feat = self.seq_encoder.encode_sequence(pts_feat_seq_list, pose_feat_seq_list)
|
||||
pts_feat = self.pts_encoder.encode_points(scanned_pts)
|
||||
pose_feat = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d)
|
||||
seq_feat = torch.cat([pts_feat, pose_feat], dim=-1)
|
||||
feat_seq_list.append(seq_feat)
|
||||
main_feat = self.seq_encoder.encode_sequence(feat_seq_list)
|
||||
|
||||
if self.enable_global_scanned_feat:
|
||||
combined_scanned_pts_batch = data['combined_scanned_pts']
|
||||
|
@@ -4,10 +4,10 @@ import PytorchBoot.namespace as namespace
|
||||
import PytorchBoot.stereotype as stereotype
|
||||
from PytorchBoot.config import ConfigManager
|
||||
from PytorchBoot.utils.log_util import Log
|
||||
|
||||
import torch
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
|
||||
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
|
||||
|
||||
@@ -51,7 +51,7 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
scene_name_list.append(scene_name)
|
||||
return scene_name_list
|
||||
|
||||
def get_datalist(self, bias=False):
|
||||
def get_datalist(self):
|
||||
datalist = []
|
||||
for scene_name in self.scene_name_list:
|
||||
seq_num = DataLoadUtil.get_label_num(self.root_dir, scene_name)
|
||||
@@ -80,18 +80,16 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
for data_pair in label_data["data_pairs"]:
|
||||
scanned_views = data_pair[0]
|
||||
next_best_view = data_pair[1]
|
||||
accept_probability = scanned_views[-1][1]
|
||||
if accept_probability > np.random.rand():
|
||||
datalist.append(
|
||||
{
|
||||
"scanned_views": scanned_views,
|
||||
"next_best_view": next_best_view,
|
||||
"seq_max_coverage_rate": max_coverage_rate,
|
||||
"scene_name": scene_name,
|
||||
"label_idx": seq_idx,
|
||||
"scene_max_coverage_rate": scene_max_coverage_rate,
|
||||
}
|
||||
)
|
||||
datalist.append(
|
||||
{
|
||||
"scanned_views": scanned_views,
|
||||
"next_best_view": next_best_view,
|
||||
"seq_max_coverage_rate": max_coverage_rate,
|
||||
"scene_name": scene_name,
|
||||
"label_idx": seq_idx,
|
||||
"scene_max_coverage_rate": scene_max_coverage_rate,
|
||||
}
|
||||
)
|
||||
return datalist
|
||||
|
||||
def preprocess_cache(self):
|
||||
@@ -117,8 +115,13 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
except Exception as e:
|
||||
Log.error(f"Save cache failed: {e}")
|
||||
|
||||
def voxel_downsample_with_mask(self, pts, voxel_size):
|
||||
pass
|
||||
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
||||
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||
idx_sort = np.argsort(inverse)
|
||||
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||
downsampled_points = point_cloud[idx_unique]
|
||||
return downsampled_points, inverse
|
||||
|
||||
|
||||
def __getitem__(self, index):
|
||||
@@ -132,6 +135,9 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
scanned_coverages_rate,
|
||||
scanned_n_to_world_pose,
|
||||
) = ([], [], [])
|
||||
#start_time = time.time()
|
||||
start_indices = [0]
|
||||
total_points = 0
|
||||
for view in scanned_views:
|
||||
frame_idx = view[0]
|
||||
coverage_rate = view[1]
|
||||
@@ -153,8 +159,12 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
n_to_world_trans = n_to_world_pose[:3, 3]
|
||||
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
|
||||
scanned_n_to_world_pose.append(n_to_world_9d)
|
||||
total_points += len(downsampled_target_point_cloud)
|
||||
start_indices.append(total_points)
|
||||
|
||||
|
||||
#end_time = time.time()
|
||||
#Log.info(f"load data time: {end_time - start_time}")
|
||||
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
|
||||
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
|
||||
cam_info = DataLoadUtil.load_cam_info(nbv_path)
|
||||
@@ -167,14 +177,27 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
best_to_world_9d = np.concatenate(
|
||||
[best_to_world_6d, best_to_world_trans], axis=0
|
||||
)
|
||||
|
||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
|
||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
|
||||
|
||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
||||
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_views_pts, 0.003)
|
||||
random_downsampled_combined_scanned_pts_np, random_downsample_idx = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num, require_idx=True)
|
||||
|
||||
# all_idx_unique = np.arange(len(voxel_downsampled_combined_scanned_pts_np))
|
||||
# all_random_downsample_idx = all_idx_unique[random_downsample_idx]
|
||||
# scanned_pts_mask = []
|
||||
# for idx, start_idx in enumerate(start_indices):
|
||||
# if idx == len(start_indices) - 1:
|
||||
# break
|
||||
# end_idx = start_indices[idx+1]
|
||||
# view_inverse = inverse[start_idx:end_idx]
|
||||
# view_unique_downsampled_idx = np.unique(view_inverse)
|
||||
# view_unique_downsampled_idx_set = set(view_unique_downsampled_idx)
|
||||
# mask = np.array([idx in view_unique_downsampled_idx_set for idx in all_random_downsample_idx])
|
||||
# #scanned_pts_mask.append(mask)
|
||||
data_item = {
|
||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)
|
||||
#"scanned_pts_mask": np.asarray(scanned_pts_mask, dtype=np.bool), # Ndarray(N)
|
||||
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
||||
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
||||
@@ -200,7 +223,9 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
collate_data["scanned_n_to_world_pose_9d"] = [
|
||||
torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch
|
||||
]
|
||||
|
||||
# collate_data["scanned_pts_mask"] = [
|
||||
# torch.tensor(item["scanned_pts_mask"]) for item in batch
|
||||
# ]
|
||||
''' ------ Fixed Length ------ '''
|
||||
|
||||
collate_data["best_to_world_pose_9d"] = torch.stack(
|
||||
@@ -209,12 +234,14 @@ class NBVReconstructionDataset(BaseDataset):
|
||||
collate_data["combined_scanned_pts"] = torch.stack(
|
||||
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
||||
)
|
||||
|
||||
for key in batch[0].keys():
|
||||
if key not in [
|
||||
"scanned_pts",
|
||||
"scanned_n_to_world_pose_9d",
|
||||
"best_to_world_pose_9d",
|
||||
"combined_scanned_pts",
|
||||
"scanned_pts_mask",
|
||||
]:
|
||||
collate_data[key] = [item[key] for item in batch]
|
||||
return collate_data
|
||||
@@ -230,10 +257,9 @@ if __name__ == "__main__":
|
||||
torch.manual_seed(seed)
|
||||
np.random.seed(seed)
|
||||
config = {
|
||||
"root_dir": "/data/hofee/data/new_full_data",
|
||||
"model_dir": "../data/scaled_object_meshes",
|
||||
"root_dir": "/data/hofee/nbv_rec_part2_preprocessed",
|
||||
"source": "nbv_reconstruction_dataset",
|
||||
"split_file": "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt",
|
||||
"split_file": "/data/hofee/data/sample.txt",
|
||||
"load_from_preprocess": True,
|
||||
"ratio": 0.5,
|
||||
"batch_size": 2,
|
||||
|
@@ -90,26 +90,51 @@ class NBVReconstructionPipeline(nn.Module):
|
||||
scanned_n_to_world_pose_9d_batch = data[
|
||||
"scanned_n_to_world_pose_9d"
|
||||
] # List(B): Tensor(S x 9)
|
||||
scanned_pts_mask_batch = data["scanned_pts_mask"] # List(B): Tensor(S x N)
|
||||
|
||||
scanned_pts_mask_batch = data["scanned_pts_mask"] # List(B): Tensor(N)
|
||||
|
||||
device = next(self.parameters()).device
|
||||
|
||||
embedding_list_batch = []
|
||||
|
||||
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
||||
global_scanned_feat = self.pts_encoder.encode_points(
|
||||
combined_scanned_pts_batch, require_per_point_feat=False
|
||||
global_scanned_feat, per_point_feat_batch = self.pts_encoder.encode_points(
|
||||
combined_scanned_pts_batch, require_per_point_feat=True
|
||||
) # global_scanned_feat: Tensor(B x Dg)
|
||||
|
||||
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
||||
batch_size = len(scanned_n_to_world_pose_9d_batch)
|
||||
for i in range(batch_size):
|
||||
seq_len = len(scanned_n_to_world_pose_9d_batch[i])
|
||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d_batch[i].to(device) # Tensor(S x 9)
|
||||
scanned_pts_mask = scanned_pts_mask_batch[i] # Tensor(S x N)
|
||||
per_point_feat = per_point_feat_batch[i] # Tensor(N x Dp)
|
||||
partial_point_feat_seq = []
|
||||
for j in range(seq_len):
|
||||
partial_per_point_feat = per_point_feat[scanned_pts_mask[j]]
|
||||
if partial_per_point_feat.shape[0] == 0:
|
||||
partial_point_feat = torch.zeros(per_point_feat.shape[1], device=device)
|
||||
else:
|
||||
partial_point_feat = torch.mean(partial_per_point_feat, dim=0) # Tensor(Dp)
|
||||
partial_point_feat_seq.append(partial_point_feat)
|
||||
partial_point_feat_seq = torch.stack(partial_point_feat_seq, dim=0) # Tensor(S x Dp)
|
||||
|
||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||
seq_embedding = pose_feat_seq
|
||||
|
||||
seq_embedding = torch.cat([partial_point_feat_seq, pose_feat_seq], dim=-1)
|
||||
|
||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
|
||||
|
||||
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
||||
|
||||
if torch.isnan(main_feat).any():
|
||||
for i in range(len(main_feat)):
|
||||
if torch.isnan(main_feat[i]).any():
|
||||
scanned_pts_mask = scanned_pts_mask_batch[i]
|
||||
Log.info(f"scanned_pts_mask shape: {scanned_pts_mask.shape}")
|
||||
Log.info(f"scanned_pts_mask sum: {scanned_pts_mask.sum()}")
|
||||
import ipdb
|
||||
ipdb.set_trace()
|
||||
Log.error("nan in main_feat", True)
|
||||
|
||||
return main_feat
|
||||
return main_feat
|
@@ -92,7 +92,8 @@ class Inferencer(Runner):
|
||||
output = self.predict_sequence(data)
|
||||
self.save_inference_result(test_set_name, data["scene_name"], output)
|
||||
except Exception as e:
|
||||
Log.error(f"Error in scene {scene_name}, {e}")
|
||||
print(e)
|
||||
Log.error(f"Error, {e}")
|
||||
continue
|
||||
|
||||
status_manager.set_progress("inference", "inferencer", f"dataset", len(self.test_set_list), len(self.test_set_list))
|
||||
@@ -116,7 +117,9 @@ class Inferencer(Runner):
|
||||
|
||||
''' data for inference '''
|
||||
input_data = {}
|
||||
|
||||
input_data["combined_scanned_pts"] = torch.tensor(data["first_scanned_pts"][0], dtype=torch.float32).to(self.device).unsqueeze(0)
|
||||
input_data["scanned_pts_mask"] = [torch.zeros(input_data["combined_scanned_pts"].shape[1], dtype=torch.bool).to(self.device).unsqueeze(0)]
|
||||
input_data["scanned_n_to_world_pose_9d"] = [torch.tensor(data["first_scanned_n_to_world_pose_9d"], dtype=torch.float32).to(self.device)]
|
||||
input_data["mode"] = namespace.Mode.TEST
|
||||
input_pts_N = input_data["combined_scanned_pts"].shape[1]
|
||||
@@ -254,6 +257,14 @@ class Inferencer(Runner):
|
||||
|
||||
return result
|
||||
|
||||
def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
|
||||
voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
|
||||
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
|
||||
idx_sort = np.argsort(inverse)
|
||||
idx_unique = idx_sort[np.cumsum(counts)-counts]
|
||||
downsampled_points = point_cloud[idx_unique]
|
||||
return downsampled_points, inverse
|
||||
|
||||
def compute_coverage_rate(self, scanned_view_pts, new_pts, model_pts, threshold=0.005):
|
||||
if new_pts is not None:
|
||||
new_scanned_view_pts = scanned_view_pts + [new_pts]
|
||||
|
@@ -1,5 +1,5 @@
|
||||
import pybullet as p
|
||||
import pybullet_data
|
||||
# import pybullet as p
|
||||
# import pybullet_data
|
||||
import numpy as np
|
||||
import os
|
||||
import time
|
||||
|
Reference in New Issue
Block a user