3 Commits

Author SHA1 Message Date
26c3cb4c7a global_and_local: debug 2024-10-29 17:12:24 +00:00
830d51fc80 upd 2024-10-29 17:01:37 +00:00
e81d6c9bd1 update 2024-10-29 16:56:43 +00:00
3 changed files with 20 additions and 23 deletions

View File

@@ -3,11 +3,11 @@ runner:
general:
seed: 0
device: cuda
cuda_visible_devices: "1"
cuda_visible_devices: "0"
parallel: False
experiment:
name: debug
name: overfit_ab_global_and_local
root_dir: "experiments"
use_checkpoint: False
epoch: -1 # -1 stands for last epoch
@@ -32,46 +32,46 @@ runner:
dataset:
OmniObject3d_train:
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
split_file: "/data/hofee/data/sample.txt"
type: train
cache: True
ratio: 1
batch_size: 160
batch_size: 32
num_workers: 16
pts_num: 8192
load_from_preprocess: True
OmniObject3d_test:
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
split_file: "/data/hofee/data/sample.txt"
type: test
cache: True
filter_degree: 75
eval_list:
- pose_diff
ratio: 0.05
batch_size: 160
ratio: 1
batch_size: 32
num_workers: 12
pts_num: 8192
load_from_preprocess: True
OmniObject3d_val:
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
split_file: "/data/hofee/data/sample.txt"
type: test
cache: True
filter_degree: 75
eval_list:
- pose_diff
ratio: 0.005
batch_size: 160
ratio: 1
batch_size: 32
num_workers: 12
pts_num: 8192
load_from_preprocess: True
@@ -92,12 +92,12 @@ module:
pointnet_encoder:
in_dim: 3
out_dim: 1024
out_dim: 512
global_feat: True
feature_transform: False
transformer_seq_encoder:
embed_dim: 256
embed_dim: 768
num_heads: 4
ffn_dim: 256
num_layers: 3
@@ -106,7 +106,7 @@ module:
gf_view_finder:
t_feat_dim: 128
pose_feat_dim: 256
main_feat_dim: 3072
main_feat_dim: 2560
regression_head: Rx_Ry_and_T
pose_mode: rot_matrix
per_point_feature: False

View File

@@ -34,7 +34,7 @@ class NBVReconstructionDataset(BaseDataset):
#self.model_dir = config["model_dir"]
self.filter_degree = config["filter_degree"]
if self.type == namespace.Mode.TRAIN:
scale_ratio = 100
scale_ratio = 50
self.datalist = self.datalist*scale_ratio
if self.cache:
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
@@ -206,9 +206,6 @@ class NBVReconstructionDataset(BaseDataset):
collate_data["combined_scanned_pts"] = torch.stack(
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
)
collate_data["scanned_pts_mask"] = torch.stack(
[torch.tensor(item["scanned_pts_mask"]) for item in batch]
)
for key in batch[0].keys():
if key not in [

View File

@@ -20,8 +20,8 @@ class NBVReconstructionPipeline(nn.Module):
self.pose_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
)
self.transformer_seq_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["transformer_seq_encoder"]
self.seq_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["seq_encoder"]
)
self.view_finder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["view_finder"]
@@ -112,7 +112,7 @@ class NBVReconstructionPipeline(nn.Module):
seq_embedding = torch.cat([pose_feat_seq, pts_feat_seq], dim=-1) # Tensor(S x (Dp+Dl))
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl))
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
if torch.isnan(main_feat).any():