Compare commits

...

4 Commits

Author SHA1 Message Date
1123e69bff fix nan 2024-10-31 12:02:48 +00:00
5e8684d149 debug 2024-10-31 11:13:37 +00:00
96fa40cc35 global_and_partial_global: upd 2024-10-30 15:34:15 +00:00
b82b92eebb global_and_partial_global: all 2024-10-30 11:49:45 +00:00
5 changed files with 118 additions and 50 deletions

View File

@ -6,17 +6,17 @@ runner:
cuda_visible_devices: "0,1,2,3,4,5,6,7" cuda_visible_devices: "0,1,2,3,4,5,6,7"
experiment: experiment:
name: debug name: server_split_dataset
root_dir: "experiments" root_dir: "experiments"
split: # split: #
root_dir: "/data/hofee/data/packed_preprocessed_data" root_dir: "/data/hofee/data/new_full_data"
type: "unseen_instance" # "unseen_category" type: "unseen_instance" # "unseen_category"
datasets: datasets:
OmniObject3d_train: OmniObject3d_train:
path: "/data/hofee/data/OmniObject3d_train.txt" path: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
ratio: 0.9 ratio: 0.9
OmniObject3d_test: OmniObject3d_test:
path: "/data/hofee/data/OmniObject3d_test.txt" path: "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt"
ratio: 0.1 ratio: 0.1

View File

@ -7,7 +7,7 @@ runner:
parallel: False parallel: False
experiment: experiment:
name: debug name: train_ab_global_and_partial_global
root_dir: "experiments" root_dir: "experiments"
use_checkpoint: False use_checkpoint: False
epoch: -1 # -1 stands for last epoch epoch: -1 # -1 stands for last epoch
@ -28,50 +28,50 @@ runner:
#- OmniObject3d_test #- OmniObject3d_test
- OmniObject3d_val - OmniObject3d_val
pipeline: nbv_reconstruction_global_pts_n_num_pipeline pipeline: nbv_reconstruction_pipeline
dataset: dataset:
OmniObject3d_train: OmniObject3d_train:
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new" root_dir: "/data/hofee/data/new_full_data"
model_dir: "../data/scaled_object_meshes" model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt" split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
type: train type: train
cache: True cache: True
ratio: 1 ratio: 1
batch_size: 160 batch_size: 80
num_workers: 16 num_workers: 128
pts_num: 8192 pts_num: 8192
load_from_preprocess: True load_from_preprocess: True
OmniObject3d_test: OmniObject3d_test:
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new" root_dir: "/data/hofee/data/new_full_data"
model_dir: "../data/scaled_object_meshes" model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt" split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_test.txt"
type: test type: test
cache: True cache: True
filter_degree: 75 filter_degree: 75
eval_list: eval_list:
- pose_diff - pose_diff
ratio: 0.05 ratio: 1
batch_size: 160 batch_size: 80
num_workers: 12 num_workers: 12
pts_num: 8192 pts_num: 8192
load_from_preprocess: True load_from_preprocess: True
OmniObject3d_val: OmniObject3d_val:
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new" root_dir: "/data/hofee/data/new_full_data"
model_dir: "../data/scaled_object_meshes" model_dir: "../data/scaled_object_meshes"
source: nbv_reconstruction_dataset source: nbv_reconstruction_dataset
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt" split_file: "/data/hofee/data/new_full_data_list/OmniObject3d_train.txt"
type: test type: test
cache: True cache: True
filter_degree: 75 filter_degree: 75
eval_list: eval_list:
- pose_diff - pose_diff
ratio: 0.005 ratio: 0.1
batch_size: 160 batch_size: 80
num_workers: 12 num_workers: 12
pts_num: 8192 pts_num: 8192
load_from_preprocess: True load_from_preprocess: True
@ -97,7 +97,7 @@ module:
feature_transform: False feature_transform: False
transformer_seq_encoder: transformer_seq_encoder:
embed_dim: 256 embed_dim: 320
num_heads: 4 num_heads: 4
ffn_dim: 256 ffn_dim: 256
num_layers: 3 num_layers: 3

View File

@ -7,6 +7,7 @@ from PytorchBoot.utils.log_util import Log
import torch import torch
import os import os
import sys import sys
import time
sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction") sys.path.append(r"/data/hofee/project/nbv_rec/nbv_reconstruction")
@ -34,7 +35,7 @@ class NBVReconstructionDataset(BaseDataset):
#self.model_dir = config["model_dir"] #self.model_dir = config["model_dir"]
self.filter_degree = config["filter_degree"] self.filter_degree = config["filter_degree"]
if self.type == namespace.Mode.TRAIN: if self.type == namespace.Mode.TRAIN:
scale_ratio = 100 scale_ratio = 1
self.datalist = self.datalist*scale_ratio self.datalist = self.datalist*scale_ratio
if self.cache: if self.cache:
expr_root = ConfigManager.get("runner", "experiment", "root_dir") expr_root = ConfigManager.get("runner", "experiment", "root_dir")
@ -114,8 +115,13 @@ class NBVReconstructionDataset(BaseDataset):
except Exception as e: except Exception as e:
Log.error(f"Save cache failed: {e}") Log.error(f"Save cache failed: {e}")
def voxel_downsample_with_mask(self, pts, voxel_size): def voxel_downsample_with_mapping(self, point_cloud, voxel_size=0.003):
pass voxel_indices = np.floor(point_cloud / voxel_size).astype(np.int32)
unique_voxels, inverse, counts = np.unique(voxel_indices, axis=0, return_inverse=True, return_counts=True)
idx_sort = np.argsort(inverse)
idx_unique = idx_sort[np.cumsum(counts)-counts]
downsampled_points = point_cloud[idx_unique]
return downsampled_points, inverse
def __getitem__(self, index): def __getitem__(self, index):
@ -129,6 +135,9 @@ class NBVReconstructionDataset(BaseDataset):
scanned_coverages_rate, scanned_coverages_rate,
scanned_n_to_world_pose, scanned_n_to_world_pose,
) = ([], [], []) ) = ([], [], [])
start_time = time.time()
start_indices = [0]
total_points = 0
for view in scanned_views: for view in scanned_views:
frame_idx = view[0] frame_idx = view[0]
coverage_rate = view[1] coverage_rate = view[1]
@ -150,8 +159,12 @@ class NBVReconstructionDataset(BaseDataset):
n_to_world_trans = n_to_world_pose[:3, 3] n_to_world_trans = n_to_world_pose[:3, 3]
n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0) n_to_world_9d = np.concatenate([n_to_world_6d, n_to_world_trans], axis=0)
scanned_n_to_world_pose.append(n_to_world_9d) scanned_n_to_world_pose.append(n_to_world_9d)
total_points += len(downsampled_target_point_cloud)
start_indices.append(total_points)
end_time = time.time()
#Log.info(f"load data time: {end_time - start_time}")
nbv_idx, nbv_coverage_rate = nbv[0], nbv[1] nbv_idx, nbv_coverage_rate = nbv[0], nbv[1]
nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx) nbv_path = DataLoadUtil.get_path(self.root_dir, scene_name, nbv_idx)
cam_info = DataLoadUtil.load_cam_info(nbv_path) cam_info = DataLoadUtil.load_cam_info(nbv_path)
@ -164,14 +177,27 @@ class NBVReconstructionDataset(BaseDataset):
best_to_world_9d = np.concatenate( best_to_world_9d = np.concatenate(
[best_to_world_6d, best_to_world_trans], axis=0 [best_to_world_6d, best_to_world_trans], axis=0
) )
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
voxel_downsampled_combined_scanned_pts_np, inverse = self.voxel_downsample_with_mapping(combined_scanned_views_pts, 0.003)
random_downsampled_combined_scanned_pts_np, random_downsample_idx = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num, require_idx=True)
all_idx_unique = np.arange(len(voxel_downsampled_combined_scanned_pts_np))
all_random_downsample_idx = all_idx_unique[random_downsample_idx]
scanned_pts_mask = []
for idx, start_idx in enumerate(start_indices):
if idx == len(start_indices) - 1:
break
end_idx = start_indices[idx+1]
view_inverse = inverse[start_idx:end_idx]
view_unique_downsampled_idx = np.unique(view_inverse)
view_unique_downsampled_idx_set = set(view_unique_downsampled_idx)
mask = np.array([idx in view_unique_downsampled_idx_set for idx in all_random_downsample_idx])
scanned_pts_mask.append(mask)
data_item = { data_item = {
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3) "scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3) "combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)
"scanned_pts_mask": np.asarray(scanned_pts_mask, dtype=np.bool), # Ndarray(N)
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1) "scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9) "scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1) "best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
@ -197,7 +223,9 @@ class NBVReconstructionDataset(BaseDataset):
collate_data["scanned_n_to_world_pose_9d"] = [ collate_data["scanned_n_to_world_pose_9d"] = [
torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch torch.tensor(item["scanned_n_to_world_pose_9d"]) for item in batch
] ]
collate_data["scanned_pts_mask"] = [
torch.tensor(item["scanned_pts_mask"]) for item in batch
]
''' ------ Fixed Length ------ ''' ''' ------ Fixed Length ------ '''
collate_data["best_to_world_pose_9d"] = torch.stack( collate_data["best_to_world_pose_9d"] = torch.stack(
@ -206,17 +234,14 @@ class NBVReconstructionDataset(BaseDataset):
collate_data["combined_scanned_pts"] = torch.stack( collate_data["combined_scanned_pts"] = torch.stack(
[torch.tensor(item["combined_scanned_pts"]) for item in batch] [torch.tensor(item["combined_scanned_pts"]) for item in batch]
) )
collate_data["scanned_pts_mask"] = torch.stack(
[torch.tensor(item["scanned_pts_mask"]) for item in batch]
)
for key in batch[0].keys(): for key in batch[0].keys():
if key not in [ if key not in [
"scanned_pts", "scanned_pts",
"scanned_pts_mask",
"scanned_n_to_world_pose_9d", "scanned_n_to_world_pose_9d",
"best_to_world_pose_9d", "best_to_world_pose_9d",
"combined_scanned_pts", "combined_scanned_pts",
"scanned_pts_mask",
]: ]:
collate_data[key] = [item[key] for item in batch] collate_data[key] = [item[key] for item in batch]
return collate_data return collate_data
@ -232,9 +257,9 @@ if __name__ == "__main__":
torch.manual_seed(seed) torch.manual_seed(seed)
np.random.seed(seed) np.random.seed(seed)
config = { config = {
"root_dir": "/data/hofee/data/packed_preprocessed_data", "root_dir": "/data/hofee/nbv_rec_part2_preprocessed",
"source": "nbv_reconstruction_dataset", "source": "nbv_reconstruction_dataset",
"split_file": "/data/hofee/data/OmniObject3d_train.txt", "split_file": "/data/hofee/data/sample.txt",
"load_from_preprocess": True, "load_from_preprocess": True,
"ratio": 0.5, "ratio": 0.5,
"batch_size": 2, "batch_size": 2,

View File

@ -20,8 +20,8 @@ class NBVReconstructionPipeline(nn.Module):
self.pose_encoder = ComponentFactory.create( self.pose_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["pose_encoder"] namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
) )
self.transformer_seq_encoder = ComponentFactory.create( self.seq_encoder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["transformer_seq_encoder"] namespace.Stereotype.MODULE, self.module_config["seq_encoder"]
) )
self.view_finder = ComponentFactory.create( self.view_finder = ComponentFactory.create(
namespace.Stereotype.MODULE, self.module_config["view_finder"] namespace.Stereotype.MODULE, self.module_config["view_finder"]
@ -54,10 +54,7 @@ class NBVReconstructionPipeline(nn.Module):
return perturbed_x, random_t, target_score, std return perturbed_x, random_t, target_score, std
def forward_train(self, data): def forward_train(self, data):
start_time = time.time()
main_feat = self.get_main_feat(data) main_feat = self.get_main_feat(data)
end_time = time.time()
print("get_main_feat time: ", end_time - start_time)
""" get std """ """ get std """
best_to_world_pose_9d_batch = data["best_to_world_pose_9d"] best_to_world_pose_9d_batch = data["best_to_world_pose_9d"]
perturbed_x, random_t, target_score, std = self.pertube_data( perturbed_x, random_t, target_score, std = self.pertube_data(
@ -92,25 +89,49 @@ class NBVReconstructionPipeline(nn.Module):
"scanned_n_to_world_pose_9d" "scanned_n_to_world_pose_9d"
] # List(B): Tensor(S x 9) ] # List(B): Tensor(S x 9)
scanned_pts_mask_batch = data["scanned_pts_mask"] # List(B): Tensor(N)
device = next(self.parameters()).device device = next(self.parameters()).device
embedding_list_batch = [] embedding_list_batch = []
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3) combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
global_scanned_feat = self.pts_encoder.encode_points( global_scanned_feat, per_point_feat_batch = self.pts_encoder.encode_points(
combined_scanned_pts_batch, require_per_point_feat=False combined_scanned_pts_batch, require_per_point_feat=True
) # global_scanned_feat: Tensor(B x Dg) ) # global_scanned_feat: Tensor(B x Dg)
batch_size = len(scanned_n_to_world_pose_9d_batch)
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch: for i in range(batch_size):
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9) seq_len = len(scanned_n_to_world_pose_9d_batch[i])
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d_batch[i].to(device) # Tensor(S x 9)
scanned_pts_mask = scanned_pts_mask_batch[i] # Tensor(S x N)
per_point_feat = per_point_feat_batch[i] # Tensor(N x Dp)
partial_point_feat_seq = []
for j in range(seq_len):
partial_per_point_feat = per_point_feat[scanned_pts_mask[j]]
if partial_per_point_feat.shape[0] == 0:
partial_point_feat = torch.zeros(per_point_feat.shape[1], device=device)
else:
partial_point_feat = torch.mean(partial_per_point_feat, dim=0) # Tensor(Dp)
partial_point_feat_seq.append(partial_point_feat)
partial_point_feat_seq = torch.stack(partial_point_feat_seq, dim=0) # Tensor(S x Dp)
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp) pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
seq_embedding = pose_feat_seq
seq_embedding = torch.cat([partial_point_feat_seq, pose_feat_seq], dim=-1)
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp)) embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds) seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg)) main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
if torch.isnan(main_feat).any(): if torch.isnan(main_feat).any():
for i in range(len(main_feat)):
if torch.isnan(main_feat[i]).any():
scanned_pts_mask = scanned_pts_mask_batch[i]
Log.info(f"scanned_pts_mask shape: {scanned_pts_mask.shape}")
Log.info(f"scanned_pts_mask sum: {scanned_pts_mask.sum()}")
import ipdb
ipdb.set_trace()
Log.error("nan in main_feat", True) Log.error("nan in main_feat", True)
return main_feat return main_feat

View File

@ -14,16 +14,38 @@ class PtsUtil:
downsampled_points = point_cloud[idx_unique] downsampled_points = point_cloud[idx_unique]
return downsampled_points, idx_unique return downsampled_points, idx_unique
else: else:
unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=True) import ipdb; ipdb.set_trace()
return unique_voxels[0]*voxel_size unique_voxels = np.unique(voxel_indices, axis=0, return_inverse=False)
return unique_voxels*voxel_size
@staticmethod
def voxel_downsample_point_cloud_o3d(point_cloud, voxel_size=0.005):
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(point_cloud)
pcd = pcd.voxel_down_sample(voxel_size)
return np.asarray(pcd.points)
@staticmethod @staticmethod
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False): def voxel_downsample_point_cloud_and_trace_o3d(point_cloud, voxel_size=0.005):
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(point_cloud)
max_bound = pcd.get_max_bound()
min_bound = pcd.get_min_bound()
pcd = pcd.voxel_down_sample_and_trace(voxel_size, max_bound, min_bound, True)
return np.asarray(pcd.points)
@staticmethod
def random_downsample_point_cloud(point_cloud, num_points, require_idx=False, replace=True):
if point_cloud.shape[0] == 0: if point_cloud.shape[0] == 0:
if require_idx: if require_idx:
return point_cloud, np.array([]) return point_cloud, np.array([])
return point_cloud return point_cloud
idx = np.random.choice(len(point_cloud), num_points, replace=True) if not replace and num_points > len(point_cloud):
if require_idx:
return point_cloud, np.arange(len(point_cloud))
return point_cloud
idx = np.random.choice(len(point_cloud), num_points, replace=replace)
if require_idx: if require_idx:
return point_cloud[idx], idx return point_cloud[idx], idx
return point_cloud[idx] return point_cloud[idx]