Compare commits
8 Commits
master
...
ab_local_o
Author | SHA1 | Date | |
---|---|---|---|
1862dce077 | |||
420e9c97bd | |||
b3a7650d3e | |||
8d7299b482 | |||
234c8bccc3 | |||
b30e9d535a | |||
d8c95b6f0c | |||
ab31ba46a9 |
@ -7,7 +7,7 @@ runner:
|
|||||||
parallel: False
|
parallel: False
|
||||||
|
|
||||||
experiment:
|
experiment:
|
||||||
name: debug
|
name: overfit_ab_local_only
|
||||||
root_dir: "experiments"
|
root_dir: "experiments"
|
||||||
use_checkpoint: False
|
use_checkpoint: False
|
||||||
epoch: -1 # -1 stands for last epoch
|
epoch: -1 # -1 stands for last epoch
|
||||||
@ -28,57 +28,57 @@ runner:
|
|||||||
#- OmniObject3d_test
|
#- OmniObject3d_test
|
||||||
- OmniObject3d_val
|
- OmniObject3d_val
|
||||||
|
|
||||||
pipeline: nbv_reconstruction_global_pts_n_num_pipeline
|
pipeline: nbv_reconstruction_pipeline
|
||||||
|
|
||||||
dataset:
|
dataset:
|
||||||
OmniObject3d_train:
|
OmniObject3d_train:
|
||||||
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
|
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||||
model_dir: "../data/scaled_object_meshes"
|
model_dir: "../data/scaled_object_meshes"
|
||||||
source: nbv_reconstruction_dataset
|
source: nbv_reconstruction_dataset
|
||||||
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
|
split_file: "/data/hofee/data/sample.txt"
|
||||||
type: train
|
type: train
|
||||||
cache: True
|
cache: True
|
||||||
ratio: 1
|
ratio: 1
|
||||||
batch_size: 160
|
batch_size: 32
|
||||||
num_workers: 16
|
num_workers: 16
|
||||||
pts_num: 8192
|
pts_num: 8192
|
||||||
load_from_preprocess: True
|
load_from_preprocess: True
|
||||||
|
|
||||||
OmniObject3d_test:
|
OmniObject3d_test:
|
||||||
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
|
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||||
model_dir: "../data/scaled_object_meshes"
|
model_dir: "../data/scaled_object_meshes"
|
||||||
source: nbv_reconstruction_dataset
|
source: nbv_reconstruction_dataset
|
||||||
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
|
split_file: "/data/hofee/data/sample.txt"
|
||||||
type: test
|
type: test
|
||||||
cache: True
|
cache: True
|
||||||
filter_degree: 75
|
filter_degree: 75
|
||||||
eval_list:
|
eval_list:
|
||||||
- pose_diff
|
- pose_diff
|
||||||
ratio: 0.05
|
ratio: 1
|
||||||
batch_size: 160
|
batch_size: 32
|
||||||
num_workers: 12
|
num_workers: 12
|
||||||
pts_num: 8192
|
pts_num: 8192
|
||||||
load_from_preprocess: True
|
load_from_preprocess: True
|
||||||
|
|
||||||
OmniObject3d_val:
|
OmniObject3d_val:
|
||||||
root_dir: "/home/data/hofee/project/nbv_rec/data/sample_for_training_new"
|
root_dir: "/data/hofee/nbv_rec_part2_preprocessed"
|
||||||
model_dir: "../data/scaled_object_meshes"
|
model_dir: "../data/scaled_object_meshes"
|
||||||
source: nbv_reconstruction_dataset
|
source: nbv_reconstruction_dataset
|
||||||
split_file: "/home/data/hofee/project/nbv_rec/data/sample.txt"
|
split_file: "/data/hofee/data/sample.txt"
|
||||||
type: test
|
type: test
|
||||||
cache: True
|
cache: True
|
||||||
filter_degree: 75
|
filter_degree: 75
|
||||||
eval_list:
|
eval_list:
|
||||||
- pose_diff
|
- pose_diff
|
||||||
ratio: 0.005
|
ratio: 1
|
||||||
batch_size: 160
|
batch_size: 32
|
||||||
num_workers: 12
|
num_workers: 12
|
||||||
pts_num: 8192
|
pts_num: 8192
|
||||||
load_from_preprocess: True
|
load_from_preprocess: True
|
||||||
|
|
||||||
|
|
||||||
pipeline:
|
pipeline:
|
||||||
nbv_reconstruction_local_pts_pipeline:
|
nbv_reconstruction_pipeline:
|
||||||
modules:
|
modules:
|
||||||
pts_encoder: pointnet_encoder
|
pts_encoder: pointnet_encoder
|
||||||
seq_encoder: transformer_seq_encoder
|
seq_encoder: transformer_seq_encoder
|
||||||
@ -87,40 +87,21 @@ pipeline:
|
|||||||
eps: 1e-5
|
eps: 1e-5
|
||||||
global_scanned_feat: True
|
global_scanned_feat: True
|
||||||
|
|
||||||
nbv_reconstruction_global_pts_pipeline:
|
|
||||||
modules:
|
|
||||||
pts_encoder: pointnet_encoder
|
|
||||||
pose_seq_encoder: transformer_seq_encoder
|
|
||||||
pose_encoder: pose_encoder
|
|
||||||
view_finder: gf_view_finder
|
|
||||||
eps: 1e-5
|
|
||||||
global_scanned_feat: True
|
|
||||||
|
|
||||||
nbv_reconstruction_global_pts_n_num_pipeline:
|
|
||||||
modules:
|
|
||||||
pts_encoder: pointnet_encoder
|
|
||||||
transformer_seq_encoder: transformer_seq_encoder
|
|
||||||
pose_encoder: pose_encoder
|
|
||||||
view_finder: gf_view_finder
|
|
||||||
pts_num_encoder: pts_num_encoder
|
|
||||||
eps: 1e-5
|
|
||||||
global_scanned_feat: True
|
|
||||||
|
|
||||||
|
|
||||||
module:
|
module:
|
||||||
|
|
||||||
pointnet_encoder:
|
pointnet_encoder:
|
||||||
in_dim: 3
|
in_dim: 3
|
||||||
out_dim: 1024
|
out_dim: 512
|
||||||
global_feat: True
|
global_feat: True
|
||||||
feature_transform: False
|
feature_transform: False
|
||||||
|
|
||||||
transformer_seq_encoder:
|
transformer_seq_encoder:
|
||||||
embed_dim: 256
|
embed_dim: 768
|
||||||
num_heads: 4
|
num_heads: 4
|
||||||
ffn_dim: 256
|
ffn_dim: 256
|
||||||
num_layers: 3
|
num_layers: 3
|
||||||
output_dim: 1024
|
output_dim: 2048
|
||||||
|
|
||||||
gf_view_finder:
|
gf_view_finder:
|
||||||
t_feat_dim: 128
|
t_feat_dim: 128
|
||||||
|
@ -34,7 +34,7 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
#self.model_dir = config["model_dir"]
|
#self.model_dir = config["model_dir"]
|
||||||
self.filter_degree = config["filter_degree"]
|
self.filter_degree = config["filter_degree"]
|
||||||
if self.type == namespace.Mode.TRAIN:
|
if self.type == namespace.Mode.TRAIN:
|
||||||
scale_ratio = 100
|
scale_ratio = 50
|
||||||
self.datalist = self.datalist*scale_ratio
|
self.datalist = self.datalist*scale_ratio
|
||||||
if self.cache:
|
if self.cache:
|
||||||
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
expr_root = ConfigManager.get("runner", "experiment", "root_dir")
|
||||||
@ -165,13 +165,8 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
[best_to_world_6d, best_to_world_trans], axis=0
|
[best_to_world_6d, best_to_world_trans], axis=0
|
||||||
)
|
)
|
||||||
|
|
||||||
combined_scanned_views_pts = np.concatenate(scanned_views_pts, axis=0)
|
|
||||||
voxel_downsampled_combined_scanned_pts_np = PtsUtil.voxel_downsample_point_cloud(combined_scanned_views_pts, 0.002)
|
|
||||||
random_downsampled_combined_scanned_pts_np = PtsUtil.random_downsample_point_cloud(voxel_downsampled_combined_scanned_pts_np, self.pts_num)
|
|
||||||
|
|
||||||
data_item = {
|
data_item = {
|
||||||
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
"scanned_pts": np.asarray(scanned_views_pts, dtype=np.float32), # Ndarray(S x Nv x 3)
|
||||||
"combined_scanned_pts": np.asarray(random_downsampled_combined_scanned_pts_np, dtype=np.float32), # Ndarray(N x 3)
|
|
||||||
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
"scanned_coverage_rate": scanned_coverages_rate, # List(S): Float, range(0, 1)
|
||||||
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
"scanned_n_to_world_pose_9d": np.asarray(scanned_n_to_world_pose, dtype=np.float32), # Ndarray(S x 9)
|
||||||
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
"best_coverage_rate": nbv_coverage_rate, # Float, range(0, 1)
|
||||||
@ -203,12 +198,6 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
collate_data["best_to_world_pose_9d"] = torch.stack(
|
collate_data["best_to_world_pose_9d"] = torch.stack(
|
||||||
[torch.tensor(item["best_to_world_pose_9d"]) for item in batch]
|
[torch.tensor(item["best_to_world_pose_9d"]) for item in batch]
|
||||||
)
|
)
|
||||||
collate_data["combined_scanned_pts"] = torch.stack(
|
|
||||||
[torch.tensor(item["combined_scanned_pts"]) for item in batch]
|
|
||||||
)
|
|
||||||
collate_data["scanned_pts_mask"] = torch.stack(
|
|
||||||
[torch.tensor(item["scanned_pts_mask"]) for item in batch]
|
|
||||||
)
|
|
||||||
|
|
||||||
for key in batch[0].keys():
|
for key in batch[0].keys():
|
||||||
if key not in [
|
if key not in [
|
||||||
@ -216,7 +205,6 @@ class NBVReconstructionDataset(BaseDataset):
|
|||||||
"scanned_pts_mask",
|
"scanned_pts_mask",
|
||||||
"scanned_n_to_world_pose_9d",
|
"scanned_n_to_world_pose_9d",
|
||||||
"best_to_world_pose_9d",
|
"best_to_world_pose_9d",
|
||||||
"combined_scanned_pts",
|
|
||||||
]:
|
]:
|
||||||
collate_data[key] = [item[key] for item in batch]
|
collate_data[key] = [item[key] for item in batch]
|
||||||
return collate_data
|
return collate_data
|
||||||
|
@ -20,8 +20,8 @@ class NBVReconstructionPipeline(nn.Module):
|
|||||||
self.pose_encoder = ComponentFactory.create(
|
self.pose_encoder = ComponentFactory.create(
|
||||||
namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
|
namespace.Stereotype.MODULE, self.module_config["pose_encoder"]
|
||||||
)
|
)
|
||||||
self.transformer_seq_encoder = ComponentFactory.create(
|
self.seq_encoder = ComponentFactory.create(
|
||||||
namespace.Stereotype.MODULE, self.module_config["transformer_seq_encoder"]
|
namespace.Stereotype.MODULE, self.module_config["seq_encoder"]
|
||||||
)
|
)
|
||||||
self.view_finder = ComponentFactory.create(
|
self.view_finder = ComponentFactory.create(
|
||||||
namespace.Stereotype.MODULE, self.module_config["view_finder"]
|
namespace.Stereotype.MODULE, self.module_config["view_finder"]
|
||||||
@ -92,24 +92,23 @@ class NBVReconstructionPipeline(nn.Module):
|
|||||||
scanned_n_to_world_pose_9d_batch = data[
|
scanned_n_to_world_pose_9d_batch = data[
|
||||||
"scanned_n_to_world_pose_9d"
|
"scanned_n_to_world_pose_9d"
|
||||||
] # List(B): Tensor(S x 9)
|
] # List(B): Tensor(S x 9)
|
||||||
|
scanned_pts_batch = data[
|
||||||
|
"scanned_pts"
|
||||||
|
]
|
||||||
device = next(self.parameters()).device
|
device = next(self.parameters()).device
|
||||||
|
|
||||||
embedding_list_batch = []
|
embedding_list_batch = []
|
||||||
|
|
||||||
combined_scanned_pts_batch = data["combined_scanned_pts"] # Tensor(B x N x 3)
|
for scanned_n_to_world_pose_9d, scanned_pts in zip(scanned_n_to_world_pose_9d_batch, scanned_pts_batch):
|
||||||
global_scanned_feat = self.pts_encoder.encode_points(
|
|
||||||
combined_scanned_pts_batch, require_per_point_feat=False
|
|
||||||
) # global_scanned_feat: Tensor(B x Dg)
|
|
||||||
|
|
||||||
for scanned_n_to_world_pose_9d in scanned_n_to_world_pose_9d_batch:
|
|
||||||
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
scanned_n_to_world_pose_9d = scanned_n_to_world_pose_9d.to(device) # Tensor(S x 9)
|
||||||
|
scanned_pts = scanned_pts.to(device) # Tensor(S x N x 3)
|
||||||
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
pose_feat_seq = self.pose_encoder.encode_pose(scanned_n_to_world_pose_9d) # Tensor(S x Dp)
|
||||||
seq_embedding = pose_feat_seq
|
pts_feat_seq = self.pts_encoder.encode_points(scanned_pts, require_per_point_feat=False) # Tensor(S x Dl)
|
||||||
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp))
|
seq_embedding = torch.cat([pose_feat_seq, pts_feat_seq], dim=-1) # Tensor(S x (Dp+Dl))
|
||||||
|
embedding_list_batch.append(seq_embedding) # List(B): Tensor(S x (Dp+Dl))
|
||||||
|
|
||||||
seq_feat = self.transformer_seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
seq_feat = self.seq_encoder.encode_sequence(embedding_list_batch) # Tensor(B x Ds)
|
||||||
main_feat = torch.cat([seq_feat, global_scanned_feat], dim=-1) # Tensor(B x (Ds+Dg))
|
main_feat = seq_feat # Tensor(B x Ds)
|
||||||
|
|
||||||
if torch.isnan(main_feat).any():
|
if torch.isnan(main_feat).any():
|
||||||
Log.error("nan in main_feat", True)
|
Log.error("nan in main_feat", True)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user