2024-10-12 21:23:56 -05:00
|
|
|
import itertools
|
|
|
|
from numba import jit
|
|
|
|
import numpy as np
|
|
|
|
import rospy
|
2024-10-13 05:34:35 -05:00
|
|
|
from .policy import MultiViewPolicy, SingleViewPolicy
|
2024-10-12 21:23:56 -05:00
|
|
|
from .timer import Timer
|
|
|
|
from .active_perception_demo import APInferenceEngine
|
2024-10-13 03:52:33 -05:00
|
|
|
from robot_helpers.spatial import Transform
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
class RealTime3DVisualizer:
|
|
|
|
def __init__(self):
|
|
|
|
points = np.random.rand(1, 1, 3)
|
|
|
|
self.points = points[0] # Extract the points (n, 3)
|
|
|
|
self.fig = plt.figure()
|
|
|
|
self.ax = self.fig.add_subplot(111, projection='3d')
|
|
|
|
|
|
|
|
# Initial plot setup
|
|
|
|
self.scatter = self.ax.scatter(self.points[:, 0], self.points[:, 1], self.points[:, 2], c='b', marker='o')
|
|
|
|
|
|
|
|
# Set labels for each axis
|
|
|
|
self.ax.set_xlabel('X')
|
|
|
|
self.ax.set_ylabel('Y')
|
|
|
|
self.ax.set_zlabel('Z')
|
|
|
|
|
|
|
|
# Set title
|
|
|
|
self.ax.set_title('Real-time 3D Points Visualization')
|
|
|
|
|
|
|
|
# Show the plot in interactive mode
|
|
|
|
plt.ion()
|
|
|
|
plt.show()
|
|
|
|
|
2024-10-12 21:23:56 -05:00
|
|
|
|
2024-10-13 03:52:33 -05:00
|
|
|
def update_points(self, new_points):
|
|
|
|
# Ensure the points have the expected shape (1, n, 3)
|
|
|
|
assert new_points.shape[0] == 1 and new_points.shape[2] == 3, "Input points must have shape (1, n, 3)"
|
2024-10-12 21:23:56 -05:00
|
|
|
|
2024-10-13 03:52:33 -05:00
|
|
|
# Update the stored points
|
|
|
|
self.points = new_points[0] # Extract the points (n, 3)
|
|
|
|
|
|
|
|
# Remove the old scatter plot and draw new points
|
|
|
|
self.scatter.remove()
|
|
|
|
self.scatter = self.ax.scatter(self.points[:, 0], self.points[:, 1], self.points[:, 2], c='b', marker='o')
|
|
|
|
|
|
|
|
# Pause briefly to allow the plot to update
|
|
|
|
plt.pause(0.001)
|
|
|
|
|
|
|
|
|
|
|
|
class ActivePerceptionMultiViewPolicy(MultiViewPolicy):
|
2024-10-12 21:23:56 -05:00
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.max_views = rospy.get_param("ap_grasp/max_views")
|
|
|
|
self.ap_config_path = rospy.get_param("ap_grasp/ap_config_path")
|
2024-10-13 07:03:48 -05:00
|
|
|
self.max_inference_num = rospy.get_param("ap_grasp/max_inference_num")
|
2024-10-12 21:23:56 -05:00
|
|
|
self.ap_inference_engine = APInferenceEngine(self.ap_config_path)
|
2024-10-13 03:52:33 -05:00
|
|
|
self.pcdvis = RealTime3DVisualizer()
|
|
|
|
|
2024-10-12 21:23:56 -05:00
|
|
|
|
2024-10-13 01:13:42 -05:00
|
|
|
def update(self, img, seg, target_id, x, q):
|
2024-10-13 03:52:33 -05:00
|
|
|
if len(self.views) > self.max_views or self.best_grasp_prediction_is_stable():
|
|
|
|
self.done = True
|
|
|
|
else:
|
|
|
|
with Timer("state_update"):
|
|
|
|
self.integrate(img, x, q)
|
2024-10-13 07:03:48 -05:00
|
|
|
|
|
|
|
# When policy hasn't produced an available grasp
|
|
|
|
c = 0
|
|
|
|
while(c < self.max_inference_num):
|
|
|
|
# Inference with our model
|
2024-10-13 03:52:33 -05:00
|
|
|
target_points, scene_points = self.depth_image_to_ap_input(img, seg, target_id)
|
|
|
|
ap_input = {'target_pts': target_points,
|
|
|
|
'scene_pts': scene_points}
|
|
|
|
ap_output = self.ap_inference_engine.inference(ap_input)
|
2024-10-13 07:03:48 -05:00
|
|
|
c += 1
|
2024-10-13 03:52:33 -05:00
|
|
|
delta_rot_6d = ap_output['estimated_delta_rot_6d']
|
|
|
|
|
|
|
|
current_cam_pose = torch.from_numpy(x.as_matrix()).float().to("cuda:0")
|
|
|
|
est_delta_rot_mat = self.rotation_6d_to_matrix_tensor_batch(delta_rot_6d)[0]
|
|
|
|
look_at_center = torch.from_numpy(self.bbox.center).float().to("cuda:0")
|
|
|
|
nbv_tensor = self.get_transformed_mat(current_cam_pose,
|
2024-10-13 07:03:48 -05:00
|
|
|
est_delta_rot_mat,
|
|
|
|
look_at_center)
|
2024-10-13 03:52:33 -05:00
|
|
|
nbv_numpy = nbv_tensor.cpu().numpy()
|
|
|
|
nbv_transform = Transform.from_matrix(nbv_numpy)
|
2024-10-13 07:03:48 -05:00
|
|
|
x_d = nbv_transform
|
|
|
|
|
|
|
|
# Check if this pose available
|
|
|
|
if(self.solve_cam_ik(self.q0, x_d)):
|
|
|
|
self.x_d = x_d
|
|
|
|
self.updated = True
|
|
|
|
print("Found an NBV!")
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
|
|
def vis_cam_pose(self, x):
|
|
|
|
# Integrate
|
|
|
|
self.views.append(x)
|
|
|
|
self.vis.path(self.base_frame, self.intrinsic, self.views)
|
2024-10-13 03:52:33 -05:00
|
|
|
|
2024-10-13 07:03:48 -05:00
|
|
|
def vis_scene_cloud(self, img, x):
|
|
|
|
self.tsdf.integrate(img, self.intrinsic, x.inv() * self.T_base_task)
|
|
|
|
scene_cloud = self.tsdf.get_scene_cloud()
|
|
|
|
self.vis.scene_cloud(self.task_frame, np.asarray(scene_cloud.points))
|
2024-10-13 03:52:33 -05:00
|
|
|
|
|
|
|
def rotation_6d_to_matrix_tensor_batch(self, d6: torch.Tensor) -> torch.Tensor:
|
|
|
|
a1, a2 = d6[..., :3], d6[..., 3:]
|
|
|
|
b1 = F.normalize(a1, dim=-1)
|
|
|
|
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
|
|
|
|
b2 = F.normalize(b2, dim=-1)
|
|
|
|
b3 = torch.cross(b1, b2, dim=-1)
|
|
|
|
return torch.stack((b1, b2, b3), dim=-2)
|
2024-10-12 21:23:56 -05:00
|
|
|
|
2024-10-13 03:52:33 -05:00
|
|
|
|
|
|
|
def get_transformed_mat(self, src_mat, delta_rot, target_center_w):
|
|
|
|
src_rot = src_mat[:3, :3]
|
|
|
|
dst_rot = src_rot @ delta_rot.T
|
|
|
|
dst_mat = torch.eye(4).to(dst_rot.device)
|
|
|
|
dst_mat[:3, :3] = dst_rot
|
|
|
|
distance = torch.norm(target_center_w - src_mat[:3, 3])
|
|
|
|
z_axis_camera = dst_rot[:3, 2].reshape(-1)
|
|
|
|
new_camera_position_w = target_center_w - distance * z_axis_camera
|
|
|
|
dst_mat[:3, 3] = new_camera_position_w
|
|
|
|
return dst_mat
|
|
|
|
|
2024-10-13 01:13:42 -05:00
|
|
|
def depth_image_to_ap_input(self, depth_img, seg_img, target_id):
|
2024-10-13 01:35:53 -05:00
|
|
|
target_points = []
|
|
|
|
scene_points = []
|
|
|
|
|
2024-10-13 01:02:57 -05:00
|
|
|
K = self.intrinsic.K
|
|
|
|
depth_shape = depth_img.shape
|
|
|
|
seg_shape = seg_img.shape
|
|
|
|
if(depth_shape == seg_shape):
|
|
|
|
img_shape = depth_shape
|
|
|
|
else:
|
|
|
|
print("Depth image shape and segmentation image shape are not the same")
|
|
|
|
return None
|
|
|
|
|
2024-10-13 01:35:53 -05:00
|
|
|
# Convert depth image to 3D points
|
|
|
|
u_indices , v_indices = np.meshgrid(np.arange(img_shape[1]), np.arange(img_shape[0]))
|
2024-10-13 01:02:57 -05:00
|
|
|
x_factors = (u_indices - K[0, 2]) / K[0, 0]
|
|
|
|
y_factors = (v_indices - K[1, 2]) / K[1, 1]
|
2024-10-13 01:35:53 -05:00
|
|
|
z_mat = depth_img
|
|
|
|
x_mat = x_factors * z_mat
|
|
|
|
y_mat = y_factors * z_mat
|
2024-10-13 01:02:57 -05:00
|
|
|
for i in range(img_shape[0]):
|
|
|
|
for j in range(img_shape[1]):
|
|
|
|
seg_id = seg_img[i, j]
|
2024-10-13 01:35:53 -05:00
|
|
|
x = x_mat[i][j]
|
|
|
|
y = y_mat[i][j]
|
|
|
|
z = z_mat[i][j]
|
2024-10-13 01:22:11 -05:00
|
|
|
if(int(seg_id) == int(target_id)):
|
2024-10-13 01:35:53 -05:00
|
|
|
# This pixel belongs to the target object to be grasped
|
|
|
|
target_points.append([x,y,z])
|
|
|
|
else:
|
|
|
|
# This pixel belongs to the scene
|
|
|
|
scene_points.append([x,y,z])
|
|
|
|
|
|
|
|
target_points = np.asarray(target_points)
|
|
|
|
target_points = target_points.reshape(1, target_points.shape[0], 3)
|
2024-10-13 03:52:33 -05:00
|
|
|
self.pcdvis.update_points(target_points)
|
|
|
|
target_points = torch.from_numpy(target_points).float().to("cuda:0")
|
2024-10-13 01:35:53 -05:00
|
|
|
scene_points = np.asarray(scene_points)
|
|
|
|
scene_points = scene_points.reshape(1, scene_points.shape[0], 3)
|
2024-10-13 03:52:33 -05:00
|
|
|
scene_points = torch.from_numpy(scene_points).float().to("cuda:0")
|
2024-10-13 01:35:53 -05:00
|
|
|
|
|
|
|
return target_points, scene_points
|
2024-10-13 01:02:57 -05:00
|
|
|
|
2024-10-12 21:23:56 -05:00
|
|
|
|
|
|
|
def best_grasp_prediction_is_stable(self):
|
|
|
|
if self.best_grasp:
|
|
|
|
t = (self.T_task_base * self.best_grasp.pose).translation
|
|
|
|
i, j, k = (t / self.tsdf.voxel_size).astype(int)
|
|
|
|
qs = self.qual_hist[:, i, j, k]
|
|
|
|
if np.count_nonzero(qs) == self.T and np.mean(qs) > 0.9:
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
2024-10-13 05:34:35 -05:00
|
|
|
|
|
|
|
class ActivePerceptionSingleViewPolicy(SingleViewPolicy):
|
|
|
|
def __init__(self):
|
|
|
|
super().__init__()
|
|
|
|
self.max_views = rospy.get_param("ap_grasp/max_views")
|
|
|
|
self.ap_config_path = rospy.get_param("ap_grasp/ap_config_path")
|
|
|
|
self.ap_inference_engine = APInferenceEngine(self.ap_config_path)
|
|
|
|
self.pcdvis = RealTime3DVisualizer()
|
|
|
|
self.updated = False
|
|
|
|
|
|
|
|
|
|
|
|
def update(self, img, seg, target_id, x, q):
|
|
|
|
# Visualize scene cloud
|
|
|
|
self.vis_scene_cloud(img, x)
|
|
|
|
|
2024-10-13 07:03:48 -05:00
|
|
|
# Visualize Initial Camera Pose
|
2024-10-13 07:10:05 -05:00
|
|
|
self.vis_cam_pose(x)
|
2024-10-13 07:03:48 -05:00
|
|
|
|
2024-10-13 05:34:35 -05:00
|
|
|
# When policy hasn't produced an available grasp
|
|
|
|
while(self.updated == False):
|
|
|
|
# Inference with our model
|
|
|
|
target_points, scene_points = self.depth_image_to_ap_input(img, seg, target_id)
|
|
|
|
ap_input = {'target_pts': target_points,
|
|
|
|
'scene_pts': scene_points}
|
|
|
|
ap_output = self.ap_inference_engine.inference(ap_input)
|
|
|
|
delta_rot_6d = ap_output['estimated_delta_rot_6d']
|
|
|
|
|
|
|
|
current_cam_pose = torch.from_numpy(x.as_matrix()).float().to("cuda:0")
|
|
|
|
est_delta_rot_mat = self.rotation_6d_to_matrix_tensor_batch(delta_rot_6d)[0]
|
|
|
|
look_at_center = torch.from_numpy(self.bbox.center).float().to("cuda:0")
|
|
|
|
nbv_tensor = self.get_transformed_mat(current_cam_pose,
|
|
|
|
est_delta_rot_mat,
|
|
|
|
look_at_center)
|
|
|
|
nbv_numpy = nbv_tensor.cpu().numpy()
|
|
|
|
nbv_transform = Transform.from_matrix(nbv_numpy)
|
|
|
|
x_d = nbv_transform
|
|
|
|
|
|
|
|
# Check if this pose available
|
|
|
|
if(self.solve_cam_ik(self.q0, x_d)):
|
|
|
|
self.vis_cam_pose(x_d)
|
|
|
|
self.x_d = x_d
|
|
|
|
self.updated = True
|
|
|
|
print("Found an NBV!")
|
|
|
|
return
|
|
|
|
# Policy has produced an available grasp
|
|
|
|
if(self.updated == True):
|
|
|
|
self.generate_grasp(q)
|
|
|
|
self.done = True
|
|
|
|
|
|
|
|
def deactivate(self):
|
|
|
|
self.vis.clear_ig_views()
|
|
|
|
self.updated = False
|
|
|
|
|
|
|
|
def vis_cam_pose(self, x):
|
|
|
|
# Integrate
|
|
|
|
self.views.append(x)
|
|
|
|
self.vis.path(self.base_frame, self.intrinsic, self.views)
|
|
|
|
|
|
|
|
def vis_scene_cloud(self, img, x):
|
|
|
|
self.tsdf.integrate(img, self.intrinsic, x.inv() * self.T_base_task)
|
|
|
|
scene_cloud = self.tsdf.get_scene_cloud()
|
|
|
|
self.vis.scene_cloud(self.task_frame, np.asarray(scene_cloud.points))
|
|
|
|
|
|
|
|
def generate_grasp(self, q):
|
|
|
|
tsdf_grid = self.tsdf.get_grid()
|
|
|
|
out = self.vgn.predict(tsdf_grid)
|
|
|
|
self.vis.quality(self.task_frame, self.tsdf.voxel_size, out.qual, 0.9)
|
|
|
|
grasps, qualities = self.filter_grasps(out, q)
|
|
|
|
|
|
|
|
if len(grasps) > 0:
|
|
|
|
self.best_grasp, quality = self.select_best_grasp(grasps, qualities)
|
|
|
|
self.vis.grasp(self.base_frame, self.best_grasp, quality)
|
|
|
|
else:
|
|
|
|
self.best_grasp = None
|
|
|
|
self.vis.clear_grasp()
|
|
|
|
|
|
|
|
|
|
|
|
def select_best_grasp(self, grasps, qualities):
|
|
|
|
i = np.argmax(qualities)
|
|
|
|
return grasps[i], qualities[i]
|
|
|
|
|
|
|
|
def rotation_6d_to_matrix_tensor_batch(self, d6: torch.Tensor) -> torch.Tensor:
|
|
|
|
a1, a2 = d6[..., :3], d6[..., 3:]
|
|
|
|
b1 = F.normalize(a1, dim=-1)
|
|
|
|
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
|
|
|
|
b2 = F.normalize(b2, dim=-1)
|
|
|
|
b3 = torch.cross(b1, b2, dim=-1)
|
|
|
|
return torch.stack((b1, b2, b3), dim=-2)
|
|
|
|
|
|
|
|
|
|
|
|
def get_transformed_mat(self, src_mat, delta_rot, target_center_w):
|
|
|
|
src_rot = src_mat[:3, :3]
|
|
|
|
dst_rot = src_rot @ delta_rot.T
|
|
|
|
dst_mat = torch.eye(4).to(dst_rot.device)
|
|
|
|
dst_mat[:3, :3] = dst_rot
|
|
|
|
distance = torch.norm(target_center_w - src_mat[:3, 3])
|
|
|
|
z_axis_camera = dst_rot[:3, 2].reshape(-1)
|
|
|
|
new_camera_position_w = target_center_w - distance * z_axis_camera
|
|
|
|
dst_mat[:3, 3] = new_camera_position_w
|
|
|
|
return dst_mat
|
|
|
|
|
|
|
|
def depth_image_to_ap_input(self, depth_img, seg_img, target_id):
|
|
|
|
target_points = []
|
|
|
|
scene_points = []
|
|
|
|
|
|
|
|
K = self.intrinsic.K
|
|
|
|
depth_shape = depth_img.shape
|
|
|
|
seg_shape = seg_img.shape
|
|
|
|
if(depth_shape == seg_shape):
|
|
|
|
img_shape = depth_shape
|
|
|
|
else:
|
|
|
|
print("Depth image shape and segmentation image shape are not the same")
|
|
|
|
return None
|
|
|
|
|
|
|
|
# Convert depth image to 3D points
|
|
|
|
u_indices , v_indices = np.meshgrid(np.arange(img_shape[1]), np.arange(img_shape[0]))
|
|
|
|
x_factors = (u_indices - K[0, 2]) / K[0, 0]
|
|
|
|
y_factors = (v_indices - K[1, 2]) / K[1, 1]
|
|
|
|
z_mat = depth_img
|
|
|
|
x_mat = x_factors * z_mat
|
|
|
|
y_mat = y_factors * z_mat
|
|
|
|
for i in range(img_shape[0]):
|
|
|
|
for j in range(img_shape[1]):
|
|
|
|
seg_id = seg_img[i, j]
|
|
|
|
x = x_mat[i][j]
|
|
|
|
y = y_mat[i][j]
|
|
|
|
z = z_mat[i][j]
|
|
|
|
if(int(seg_id) == int(target_id)):
|
|
|
|
# This pixel belongs to the target object to be grasped
|
|
|
|
target_points.append([x,y,z])
|
|
|
|
else:
|
|
|
|
# This pixel belongs to the scene
|
|
|
|
scene_points.append([x,y,z])
|
|
|
|
|
|
|
|
target_points = np.asarray(target_points)
|
|
|
|
target_points = target_points.reshape(1, target_points.shape[0], 3)
|
|
|
|
self.pcdvis.update_points(target_points)
|
|
|
|
target_points = torch.from_numpy(target_points).float().to("cuda:0")
|
|
|
|
scene_points = np.asarray(scene_points)
|
|
|
|
scene_points = scene_points.reshape(1, scene_points.shape[0], 3)
|
|
|
|
scene_points = torch.from_numpy(scene_points).float().to("cuda:0")
|
|
|
|
|
|
|
|
return target_points, scene_points
|