successfully applies segmentation input for policy class

This commit is contained in:
0nhc
2024-10-13 00:37:45 -05:00
parent 0bfb696c1b
commit 0b3d7f2b22
7 changed files with 92 additions and 24 deletions

View File

@@ -18,7 +18,7 @@ class ActivePerceptionPolicy(MultiViewPolicy):
def activate(self, bbox, view_sphere):
super().activate(bbox, view_sphere)
def update(self, img, x, q):
def update(self, img, seg, x, q):
self.depth_image_to_ap_input(img)
# if len(self.views) > self.max_views or self.best_grasp_prediction_is_stable():
# self.done = True

View File

@@ -32,6 +32,7 @@ class GraspController:
self.T_grasp_ee = Transform.from_list(rospy.get_param("~ee_grasp_offset")).inv()
self.cam_frame = rospy.get_param("~camera/frame_id")
self.depth_topic = rospy.get_param("~camera/depth_topic")
self.seg_topic = rospy.get_param("~camera/seg_topic")
self.min_z_dist = rospy.get_param("~camera/min_z_dist")
self.control_rate = rospy.get_param("~control_rate")
self.linear_vel = rospy.get_param("~linear_vel")
@@ -71,10 +72,14 @@ class GraspController:
def init_camera_stream(self):
self.cv_bridge = cv_bridge.CvBridge()
rospy.Subscriber(self.depth_topic, Image, self.sensor_cb, queue_size=1)
rospy.Subscriber(self.depth_topic, Image, self.depth_cb, queue_size=1)
rospy.Subscriber(self.seg_topic, Image, self.seg_cb, queue_size=1)
def sensor_cb(self, msg):
def depth_cb(self, msg):
self.latest_depth_msg = msg
def seg_cb(self, msg):
self.latest_seg_msg = msg
def run(self):
bbox = self.reset()
@@ -102,8 +107,8 @@ class GraspController:
timer = rospy.Timer(rospy.Duration(1.0 / self.control_rate), self.send_vel_cmd)
r = rospy.Rate(self.policy_rate)
while not self.policy.done:
img, pose, q = self.get_state()
self.policy.update(img, pose, q)
depth_img, seg_image, pose, q = self.get_state()
self.policy.update(depth_img, seg_image, pose, q)
r.sleep()
rospy.sleep(0.2) # Wait for a zero command to be sent to the robot.
self.policy.deactivate()
@@ -113,9 +118,11 @@ class GraspController:
def get_state(self):
q, _ = self.arm.get_state()
msg = copy.deepcopy(self.latest_depth_msg)
img = self.cv_bridge.imgmsg_to_cv2(msg).astype(np.float32) * 0.001
depth_img = self.cv_bridge.imgmsg_to_cv2(msg).astype(np.float32) * 0.001
msg = copy.deepcopy(self.latest_seg_msg)
seg_img = self.cv_bridge.imgmsg_to_cv2(msg).astype(np.float32)
pose = tf.lookup(self.base_frame, self.cam_frame, msg.header.stamp)
return img, pose, q
return depth_img, seg_img, pose, q
def send_vel_cmd(self, event):
if self.policy.x_d is None or self.policy.done:

View File

@@ -84,7 +84,7 @@ class NextBestView(MultiViewPolicy):
def activate(self, bbox, view_sphere):
super().activate(bbox, view_sphere)
def update(self, img, x, q):
def update(self, img, seg, x, q):
if len(self.views) > self.max_views or self.best_grasp_prediction_is_stable():
self.done = True
else:

View File

@@ -75,7 +75,7 @@ class Policy:
rospy.sleep(1.0) # Wait for tf tree to be updated
self.vis.roi(self.task_frame, 0.3)
def update(self, img, x, q):
def update(self, img, seg, x, q):
raise NotImplementedError
def filter_grasps(self, out, q):
@@ -106,7 +106,7 @@ def select_best_grasp(grasps, qualities):
class SingleViewPolicy(Policy):
def update(self, img, x, q):
def update(self, img, seg, x, q):
linear, _ = compute_error(self.x_d, x)
if np.linalg.norm(linear) < 0.02:
self.views.append(x)