Visualize quality and grasps
This commit is contained in:
@@ -34,7 +34,7 @@ class BasePolicy(Policy):
|
||||
msg = rospy.wait_for_message(info_topic, CameraInfo, rospy.Duration(2.0))
|
||||
self.intrinsic = from_camera_info_msg(msg)
|
||||
self.vgn = VGN(Path(rospy.get_param("vgn/model")))
|
||||
self.score_fn = lambda g: g.pose.translation[2]
|
||||
self.score_fn = lambda g: g.pose.translation[2] # TODO
|
||||
|
||||
def init_visualizer(self):
|
||||
self.visualizer = Visualizer(self.base_frame)
|
||||
@@ -42,13 +42,12 @@ class BasePolicy(Policy):
|
||||
def activate(self, bbox):
|
||||
self.bbox = bbox
|
||||
|
||||
# Define the VGN task frame s.t. the bounding box is in its center
|
||||
self.center = 0.5 * (bbox.min + bbox.max)
|
||||
self.T_base_task = Transform.translation(self.center - np.full(3, 0.15))
|
||||
tf.broadcast(self.T_base_task, self.base_frame, self.task_frame)
|
||||
rospy.sleep(0.1) # wait for the transform to be published
|
||||
rospy.sleep(1.0) # wait for the transform to be published
|
||||
|
||||
N, self.T = 40, 10 # spatial and temporal resolution
|
||||
N, self.T = 40, 10
|
||||
grid_shape = (N,) * 3
|
||||
|
||||
self.tsdf = UniformTSDFVolume(0.3, N)
|
||||
@@ -67,64 +66,62 @@ class BasePolicy(Policy):
|
||||
def integrate_img(self, img, extrinsic):
|
||||
self.viewpoints.append(extrinsic.inv())
|
||||
self.tsdf.integrate(img, self.intrinsic, extrinsic * self.T_base_task)
|
||||
self.visualizer.scene_cloud(self.task_frame, self.tsdf.get_scene_cloud())
|
||||
self.visualizer.path(self.viewpoints)
|
||||
|
||||
if self.filter_grasps:
|
||||
tsdf_grid = self.tsdf.get_grid()
|
||||
out = self.vgn.predict(tsdf_grid)
|
||||
out = self.vgn.predict(self.tsdf.get_grid())
|
||||
t = (len(self.viewpoints) - 1) % self.T
|
||||
self.qual_hist[t, ...] = out.qual
|
||||
self.rot_hist[t, ...] = out.rot
|
||||
self.width_hist[t, ...] = out.width
|
||||
|
||||
mean_qual = self.compute_mean_quality()
|
||||
self.visualizer.quality(self.task_frame, self.tsdf.voxel_size, mean_qual)
|
||||
|
||||
self.visualizer.scene_cloud(self.task_frame, self.tsdf.get_scene_cloud())
|
||||
self.visualizer.path(self.viewpoints)
|
||||
|
||||
def compute_best_grasp(self):
|
||||
if self.filter_grasps:
|
||||
T = len(self.viewpoints) if len(self.viewpoints) // self.T == 0 else self.T
|
||||
mask = self.qual_hist[:T, ...] > 0.0
|
||||
# The next line prints a warning since some voxels have no grasp
|
||||
# predictions resulting in empty slices.
|
||||
qual = np.mean(self.qual_hist[:T, ...], axis=0, where=mask)
|
||||
qual = np.nan_to_num(qual, copy=False)
|
||||
qual = threshold_quality(qual, 0.9)
|
||||
index_list = select_local_maxima(qual, 3)
|
||||
|
||||
grasps = []
|
||||
for (i, j, k) in index_list:
|
||||
ts = np.flatnonzero(self.qual_hist[:T, i, j, k])
|
||||
if len(ts) < 3:
|
||||
continue
|
||||
oris = Rotation.from_quat([self.rot_hist[t, :, i, j, k] for t in ts])
|
||||
ori = oris.mean()
|
||||
# TODO check variance as well
|
||||
pos = np.array([i, j, k], dtype=np.float64)
|
||||
width = self.width_hist[ts, i, j, k].mean()
|
||||
quality = self.qual_hist[ts, i, j, k].mean()
|
||||
grasps.append(Grasp(Transform(ori, pos), width, quality))
|
||||
qual = self.compute_mean_quality()
|
||||
index_list = select_local_maxima(qual, 0.9, 3)
|
||||
grasps = [g for i in index_list if (g := self.select_mean_at(i))]
|
||||
else:
|
||||
tsdf_grid = self.tsdf.get_grid()
|
||||
out = self.vgn.predict(tsdf_grid)
|
||||
qual = threshold_quality(out.qual, 0.9)
|
||||
index_list = select_local_maxima(qual, 3)
|
||||
out = self.vgn.predict(self.tsdf.get_grid())
|
||||
qual = out.qual
|
||||
index_list = select_local_maxima(qual, 0.9, 3)
|
||||
grasps = [select_at(out, i) for i in index_list]
|
||||
|
||||
grasps = [from_voxel_coordinates(g, self.tsdf.voxel_size) for g in grasps]
|
||||
grasps = self.transform_grasps_to_base_frame(grasps)
|
||||
grasps = self.select_grasps_on_target_object(grasps)
|
||||
grasps = self.transform_and_reject(grasps)
|
||||
grasps = sort_grasps(grasps, self.score_fn)
|
||||
|
||||
self.visualizer.quality(self.task_frame, self.tsdf.voxel_size, qual)
|
||||
self.visualizer.grasps(grasps)
|
||||
|
||||
return grasps[0] if len(grasps) > 0 else None
|
||||
|
||||
def transform_grasps_to_base_frame(self, grasps):
|
||||
for grasp in grasps:
|
||||
grasp.pose = self.T_base_task * grasp.pose
|
||||
return grasps
|
||||
def compute_mean_quality(self):
|
||||
qual = np.mean(self.qual_hist, axis=0, where=self.qual_hist > 0.0)
|
||||
return np.nan_to_num(qual, copy=False) # mean of empty slices returns nan
|
||||
|
||||
def select_grasps_on_target_object(self, grasps):
|
||||
def select_mean_at(self, index):
|
||||
i, j, k = index
|
||||
ts = np.flatnonzero(self.qual_hist[:, i, j, k])
|
||||
if len(ts) < 3:
|
||||
return
|
||||
ori = Rotation.from_quat([self.rot_hist[t, :, i, j, k] for t in ts])
|
||||
pos = np.array([i, j, k], dtype=np.float64)
|
||||
width = self.width_hist[ts, i, j, k].mean()
|
||||
qual = self.qual_hist[ts, i, j, k].mean()
|
||||
return Grasp(Transform(ori.mean(), pos), width, qual)
|
||||
|
||||
def transform_and_reject(self, grasps):
|
||||
result = []
|
||||
for grasp in grasps:
|
||||
tip = grasp.pose.rotation.apply([0, 0, 0.05]) + grasp.pose.translation
|
||||
pose = self.T_base_task * grasp.pose
|
||||
tip = pose.rotation.apply([0, 0, 0.05]) + pose.translation
|
||||
if self.bbox.is_inside(tip):
|
||||
grasp.pose = pose
|
||||
result.append(grasp)
|
||||
return result
|
||||
|
||||
|
@@ -1,3 +1,4 @@
|
||||
from geometry_msgs.msg import PoseArray
|
||||
import numpy as np
|
||||
import rospy
|
||||
|
||||
@@ -11,10 +12,17 @@ class Visualizer:
|
||||
self.frame = frame
|
||||
self.marker_pub = rospy.Publisher(topic, MarkerArray, queue_size=1)
|
||||
self.scene_cloud_pub = rospy.Publisher("scene_cloud", PointCloud2, queue_size=1)
|
||||
self.quality_pub = rospy.Publisher("quality", PointCloud2, queue_size=1)
|
||||
self.grasps_pub = rospy.Publisher("grasps", PoseArray, queue_size=1)
|
||||
|
||||
def clear(self):
|
||||
marker = Marker(action=Marker.DELETEALL)
|
||||
self.draw([marker])
|
||||
self.draw([Marker(action=Marker.DELETEALL)])
|
||||
msg = to_cloud_msg(self.frame, np.array([]))
|
||||
self.scene_cloud_pub.publish(msg)
|
||||
self.quality_pub.publish(msg)
|
||||
msg = PoseArray()
|
||||
msg.header.frame_id = self.frame
|
||||
self.grasps_pub.publish(msg)
|
||||
|
||||
def bbox(self, bbox):
|
||||
pose = Transform.translation((bbox.min + bbox.max) / 2.0)
|
||||
@@ -23,10 +31,6 @@ class Visualizer:
|
||||
marker = create_cube_marker(self.frame, pose, scale, color, ns="bbox")
|
||||
self.draw([marker])
|
||||
|
||||
def scene_cloud(self, frame, cloud):
|
||||
msg = to_cloud_msg(frame, np.asarray(cloud.points))
|
||||
self.scene_cloud_pub.publish(msg)
|
||||
|
||||
def path(self, poses):
|
||||
color = np.r_[31, 119, 180] / 255.0
|
||||
points = [p.translation for p in poses]
|
||||
@@ -52,3 +56,18 @@ class Visualizer:
|
||||
|
||||
def draw(self, markers):
|
||||
self.marker_pub.publish(MarkerArray(markers=markers))
|
||||
|
||||
def scene_cloud(self, frame, cloud):
|
||||
msg = to_cloud_msg(frame, np.asarray(cloud.points))
|
||||
self.scene_cloud_pub.publish(msg)
|
||||
|
||||
def quality(self, frame, voxel_size, quality):
|
||||
points, values = grid_to_map_cloud(voxel_size, quality, threshold=0.8)
|
||||
msg = to_cloud_msg(frame, points, intensities=values)
|
||||
self.quality_pub.publish(msg)
|
||||
|
||||
def grasps(self, grasps):
|
||||
msg = PoseArray()
|
||||
msg.header.frame_id = self.frame
|
||||
msg.poses = [to_pose_msg(grasp.pose) for grasp in grasps]
|
||||
self.grasps_pub.publish(msg)
|
||||
|
Reference in New Issue
Block a user