Define task frame based on bbox
This commit is contained in:
@@ -12,9 +12,9 @@ class SingleView(BasePolicy):
|
||||
Process a single image from the initial viewpoint.
|
||||
"""
|
||||
|
||||
def update(self):
|
||||
self._integrate_latest_image()
|
||||
self.best_grasp = self._predict_best_grasp()
|
||||
def update(self, img, extrinsic):
|
||||
self.integrate_img(img, extrinsic)
|
||||
self.best_grasp = self.predict_best_grasp()
|
||||
self.done = True
|
||||
|
||||
|
||||
@@ -25,21 +25,17 @@ class TopView(BasePolicy):
|
||||
|
||||
def activate(self, bbox):
|
||||
super().activate(bbox)
|
||||
center = (bbox.min + bbox.max) / 2.0
|
||||
eye = np.r_[center[:2], center[2] + 0.3]
|
||||
eye = np.r_[self.center[:2], self.center[2] + 0.3]
|
||||
up = np.r_[1.0, 0.0, 0.0]
|
||||
self.target = self.T_B_task * (self.T_EE_cam * look_at(eye, center, up)).inv()
|
||||
|
||||
def update(self):
|
||||
current = tf.lookup(self.base_frame, self.ee_frame)
|
||||
error = current.translation - self.target.translation
|
||||
self.target = look_at(eye, self.center, up)
|
||||
|
||||
def update(self, img, extrinsic):
|
||||
self.integrate_img(img, extrinsic)
|
||||
error = extrinsic.translation - self.target.translation
|
||||
if np.linalg.norm(error) < 0.01:
|
||||
self.best_grasp = self._predict_best_grasp()
|
||||
self.best_grasp = self.predict_best_grasp()
|
||||
self.done = True
|
||||
else:
|
||||
self._integrate_latest_image()
|
||||
return self.target
|
||||
return self.target
|
||||
|
||||
|
||||
class RandomView(BasePolicy):
|
||||
@@ -47,31 +43,25 @@ class RandomView(BasePolicy):
|
||||
Move the camera to a random viewpoint on a circle centered above the target.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.r = 0.06
|
||||
self.h = 0.3
|
||||
def __init__(self, intrinsic):
|
||||
super().__init__(intrinsic)
|
||||
self.r = 0.06 # radius of the circle
|
||||
self.h = 0.3 # distance above bbox center
|
||||
|
||||
def activate(self, bbox):
|
||||
super().activate(bbox)
|
||||
circle_center = (bbox.min + bbox.max) / 2.0
|
||||
circle_center[2] += self.h
|
||||
t = np.random.uniform(np.pi, 3.0 * np.pi)
|
||||
eye = circle_center + np.r_[self.r * np.cos(t), self.r * np.sin(t), 0]
|
||||
center = (self.bbox.min + self.bbox.max) / 2.0
|
||||
eye = self.center + np.r_[self.r * np.cos(t), self.r * np.sin(t), self.h]
|
||||
up = np.r_[1.0, 0.0, 0.0]
|
||||
self.target = self.T_B_task * (self.T_EE_cam * look_at(eye, center, up)).inv()
|
||||
|
||||
def update(self):
|
||||
current = tf.lookup(self.base_frame, self.ee_frame)
|
||||
error = current.translation - self.target.translation
|
||||
self.target = look_at(eye, self.center, up)
|
||||
|
||||
def update(self, img, extrinsic):
|
||||
self.integrate_img(img, extrinsic)
|
||||
error = extrinsic.translation - self.target.translation
|
||||
if np.linalg.norm(error) < 0.01:
|
||||
self.best_grasp = self._predict_best_grasp()
|
||||
self.best_grasp = self.predict_best_grasp()
|
||||
self.done = True
|
||||
else:
|
||||
self._integrate_latest_image()
|
||||
return self.target
|
||||
return self.target
|
||||
|
||||
|
||||
class FixedTrajectory(BasePolicy):
|
||||
@@ -79,9 +69,9 @@ class FixedTrajectory(BasePolicy):
|
||||
Follow a pre-defined circular trajectory centered above the target object.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.r = 0.06
|
||||
def __init__(self, intrinsic):
|
||||
super().__init__(intrinsic)
|
||||
self.r = 0.08
|
||||
self.h = 0.3
|
||||
self.duration = 6.0
|
||||
self.m = scipy.interpolate.interp1d([0, self.duration], [np.pi, 3.0 * np.pi])
|
||||
@@ -89,21 +79,18 @@ class FixedTrajectory(BasePolicy):
|
||||
def activate(self, bbox):
|
||||
super().activate(bbox)
|
||||
self.tic = rospy.Time.now()
|
||||
self.circle_center = (bbox.min + bbox.max) / 2.0
|
||||
self.circle_center[2] += self.h
|
||||
|
||||
def update(self):
|
||||
def update(self, img, extrinsic):
|
||||
self.integrate_img(img, extrinsic)
|
||||
elapsed_time = (rospy.Time.now() - self.tic).to_sec()
|
||||
if elapsed_time > self.duration:
|
||||
self.best_grasp = self._predict_best_grasp()
|
||||
self.best_grasp = self.predict_best_grasp()
|
||||
self.done = True
|
||||
else:
|
||||
self._integrate_latest_image()
|
||||
t = self.m(elapsed_time)
|
||||
eye = self.circle_center + np.r_[self.r * np.cos(t), self.r * np.sin(t), 0]
|
||||
center = (self.bbox.min + self.bbox.max) / 2.0
|
||||
eye = self.center + np.r_[self.r * np.cos(t), self.r * np.sin(t), self.h]
|
||||
up = np.r_[1.0, 0.0, 0.0]
|
||||
target = self.T_B_task * (self.T_EE_cam * look_at(eye, center, up)).inv()
|
||||
target = look_at(eye, self.center, up)
|
||||
return target
|
||||
|
||||
|
||||
@@ -114,24 +101,24 @@ class AlignmentView(BasePolicy):
|
||||
|
||||
def activate(self, bbox):
|
||||
super().activate(bbox)
|
||||
self._integrate_latest_image()
|
||||
self.best_grasp = self._predict_best_grasp()
|
||||
if self.best_grasp:
|
||||
R, t = self.best_grasp.rotation, self.best_grasp.translation
|
||||
center = t
|
||||
self.target = None
|
||||
|
||||
def update(self, img, extrinsic):
|
||||
self.integrate_img(img, extrinsic)
|
||||
|
||||
if not self.target:
|
||||
grasp = self.predict_best_grasp()
|
||||
if not grasp:
|
||||
self.done = True
|
||||
return
|
||||
R, t = grasp.pose.rotation, grasp.pose.translation
|
||||
eye = R.apply([0.0, 0.0, -0.16]) + t
|
||||
center = t
|
||||
up = np.r_[1.0, 0.0, 0.0]
|
||||
self.target = (self.T_EE_cam * look_at(eye, center, up)).inv()
|
||||
else:
|
||||
self.done = True
|
||||
|
||||
def update(self):
|
||||
current = tf.lookup(self.base_frame, self.ee_frame)
|
||||
error = current.translation - self.target.translation
|
||||
self.target = look_at(eye, center, up)
|
||||
|
||||
error = extrinsic.translation - self.target.translation
|
||||
if np.linalg.norm(error) < 0.01:
|
||||
self.best_grasp = self._predict_best_grasp()
|
||||
self.best_grasp = self.predict_best_grasp()
|
||||
self.done = True
|
||||
else:
|
||||
self._integrate_latest_image()
|
||||
return self.target
|
||||
return self.target
|
||||
|
Reference in New Issue
Block a user