Define task frame based on bbox

This commit is contained in:
Michel Breyer
2021-08-03 18:11:30 +02:00
parent 8a0dd9fd45
commit 5d17498084
10 changed files with 244 additions and 251 deletions

View File

@@ -12,9 +12,9 @@ class SingleView(BasePolicy):
Process a single image from the initial viewpoint.
"""
def update(self):
self._integrate_latest_image()
self.best_grasp = self._predict_best_grasp()
def update(self, img, extrinsic):
self.integrate_img(img, extrinsic)
self.best_grasp = self.predict_best_grasp()
self.done = True
@@ -25,21 +25,17 @@ class TopView(BasePolicy):
def activate(self, bbox):
super().activate(bbox)
center = (bbox.min + bbox.max) / 2.0
eye = np.r_[center[:2], center[2] + 0.3]
eye = np.r_[self.center[:2], self.center[2] + 0.3]
up = np.r_[1.0, 0.0, 0.0]
self.target = self.T_B_task * (self.T_EE_cam * look_at(eye, center, up)).inv()
def update(self):
current = tf.lookup(self.base_frame, self.ee_frame)
error = current.translation - self.target.translation
self.target = look_at(eye, self.center, up)
def update(self, img, extrinsic):
self.integrate_img(img, extrinsic)
error = extrinsic.translation - self.target.translation
if np.linalg.norm(error) < 0.01:
self.best_grasp = self._predict_best_grasp()
self.best_grasp = self.predict_best_grasp()
self.done = True
else:
self._integrate_latest_image()
return self.target
return self.target
class RandomView(BasePolicy):
@@ -47,31 +43,25 @@ class RandomView(BasePolicy):
Move the camera to a random viewpoint on a circle centered above the target.
"""
def __init__(self):
super().__init__()
self.r = 0.06
self.h = 0.3
def __init__(self, intrinsic):
super().__init__(intrinsic)
self.r = 0.06 # radius of the circle
self.h = 0.3 # distance above bbox center
def activate(self, bbox):
super().activate(bbox)
circle_center = (bbox.min + bbox.max) / 2.0
circle_center[2] += self.h
t = np.random.uniform(np.pi, 3.0 * np.pi)
eye = circle_center + np.r_[self.r * np.cos(t), self.r * np.sin(t), 0]
center = (self.bbox.min + self.bbox.max) / 2.0
eye = self.center + np.r_[self.r * np.cos(t), self.r * np.sin(t), self.h]
up = np.r_[1.0, 0.0, 0.0]
self.target = self.T_B_task * (self.T_EE_cam * look_at(eye, center, up)).inv()
def update(self):
current = tf.lookup(self.base_frame, self.ee_frame)
error = current.translation - self.target.translation
self.target = look_at(eye, self.center, up)
def update(self, img, extrinsic):
self.integrate_img(img, extrinsic)
error = extrinsic.translation - self.target.translation
if np.linalg.norm(error) < 0.01:
self.best_grasp = self._predict_best_grasp()
self.best_grasp = self.predict_best_grasp()
self.done = True
else:
self._integrate_latest_image()
return self.target
return self.target
class FixedTrajectory(BasePolicy):
@@ -79,9 +69,9 @@ class FixedTrajectory(BasePolicy):
Follow a pre-defined circular trajectory centered above the target object.
"""
def __init__(self):
super().__init__()
self.r = 0.06
def __init__(self, intrinsic):
super().__init__(intrinsic)
self.r = 0.08
self.h = 0.3
self.duration = 6.0
self.m = scipy.interpolate.interp1d([0, self.duration], [np.pi, 3.0 * np.pi])
@@ -89,21 +79,18 @@ class FixedTrajectory(BasePolicy):
def activate(self, bbox):
super().activate(bbox)
self.tic = rospy.Time.now()
self.circle_center = (bbox.min + bbox.max) / 2.0
self.circle_center[2] += self.h
def update(self):
def update(self, img, extrinsic):
self.integrate_img(img, extrinsic)
elapsed_time = (rospy.Time.now() - self.tic).to_sec()
if elapsed_time > self.duration:
self.best_grasp = self._predict_best_grasp()
self.best_grasp = self.predict_best_grasp()
self.done = True
else:
self._integrate_latest_image()
t = self.m(elapsed_time)
eye = self.circle_center + np.r_[self.r * np.cos(t), self.r * np.sin(t), 0]
center = (self.bbox.min + self.bbox.max) / 2.0
eye = self.center + np.r_[self.r * np.cos(t), self.r * np.sin(t), self.h]
up = np.r_[1.0, 0.0, 0.0]
target = self.T_B_task * (self.T_EE_cam * look_at(eye, center, up)).inv()
target = look_at(eye, self.center, up)
return target
@@ -114,24 +101,24 @@ class AlignmentView(BasePolicy):
def activate(self, bbox):
super().activate(bbox)
self._integrate_latest_image()
self.best_grasp = self._predict_best_grasp()
if self.best_grasp:
R, t = self.best_grasp.rotation, self.best_grasp.translation
center = t
self.target = None
def update(self, img, extrinsic):
self.integrate_img(img, extrinsic)
if not self.target:
grasp = self.predict_best_grasp()
if not grasp:
self.done = True
return
R, t = grasp.pose.rotation, grasp.pose.translation
eye = R.apply([0.0, 0.0, -0.16]) + t
center = t
up = np.r_[1.0, 0.0, 0.0]
self.target = (self.T_EE_cam * look_at(eye, center, up)).inv()
else:
self.done = True
def update(self):
current = tf.lookup(self.base_frame, self.ee_frame)
error = current.translation - self.target.translation
self.target = look_at(eye, center, up)
error = extrinsic.translation - self.target.translation
if np.linalg.norm(error) < 0.01:
self.best_grasp = self._predict_best_grasp()
self.best_grasp = self.predict_best_grasp()
self.done = True
else:
self._integrate_latest_image()
return self.target
return self.target