Define task frame based on bbox
This commit is contained in:
@@ -1,8 +1,6 @@
|
||||
import cv_bridge
|
||||
import numpy as np
|
||||
from pathlib import Path
|
||||
import rospy
|
||||
from sensor_msgs.msg import CameraInfo, Image, PointCloud2
|
||||
|
||||
from .visualization import Visualizer
|
||||
from robot_helpers.ros import tf
|
||||
@@ -16,87 +14,68 @@ class Policy:
|
||||
def activate(self, bbox):
|
||||
raise NotImplementedError
|
||||
|
||||
def update(self):
|
||||
def update(self, img, extrinsic):
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
class BasePolicy(Policy):
|
||||
def __init__(self):
|
||||
self.cv_bridge = cv_bridge.CvBridge()
|
||||
self.vgn = VGN(Path(rospy.get_param("vgn/model")))
|
||||
self.finger_depth = 0.05
|
||||
def __init__(self, intrinsic):
|
||||
self.intrinsic = intrinsic
|
||||
self.rate = 5
|
||||
self._load_parameters()
|
||||
self._lookup_transforms()
|
||||
self._init_camera_stream()
|
||||
self._init_publishers()
|
||||
self._init_visualizer()
|
||||
self.load_parameters()
|
||||
self.init_visualizer()
|
||||
|
||||
def _load_parameters(self):
|
||||
self.task_frame = rospy.get_param("~frame_id")
|
||||
self.base_frame = rospy.get_param("~base_frame_id")
|
||||
self.ee_frame = rospy.get_param("~ee_frame_id")
|
||||
self.cam_frame = rospy.get_param("~camera/frame_id")
|
||||
self.info_topic = rospy.get_param("~camera/info_topic")
|
||||
self.depth_topic = rospy.get_param("~camera/depth_topic")
|
||||
def load_parameters(self):
|
||||
self.base_frame = rospy.get_param("active_grasp/base_frame_id")
|
||||
self.task_frame = "task"
|
||||
self.vgn = VGN(Path(rospy.get_param("vgn/model")))
|
||||
|
||||
def _lookup_transforms(self):
|
||||
self.T_B_task = tf.lookup(self.base_frame, self.task_frame)
|
||||
self.T_EE_cam = tf.lookup(self.ee_frame, self.cam_frame)
|
||||
|
||||
def _init_camera_stream(self):
|
||||
msg = rospy.wait_for_message(self.info_topic, CameraInfo, rospy.Duration(2.0))
|
||||
self.intrinsic = from_camera_info_msg(msg)
|
||||
rospy.Subscriber(self.depth_topic, Image, self._sensor_cb, queue_size=1)
|
||||
|
||||
def _sensor_cb(self, msg):
|
||||
self.img = self.cv_bridge.imgmsg_to_cv2(msg).astype(np.float32)
|
||||
self.extrinsic = tf.lookup(self.cam_frame, self.task_frame, msg.header.stamp)
|
||||
|
||||
def _init_publishers(self):
|
||||
self.scene_cloud_pub = rospy.Publisher("scene_cloud", PointCloud2, queue_size=1)
|
||||
|
||||
def _init_visualizer(self):
|
||||
self.visualizer = Visualizer(self.task_frame)
|
||||
def init_visualizer(self):
|
||||
self.visualizer = Visualizer(self.base_frame)
|
||||
|
||||
def activate(self, bbox):
|
||||
self.bbox = bbox
|
||||
|
||||
# Define the VGN task frame s.t. the bounding box is in its center
|
||||
self.center = 0.5 * (bbox.min + bbox.max)
|
||||
self.T_base_task = Transform.translation(self.center - np.full(3, 0.15))
|
||||
tf.broadcast(self.T_base_task, self.base_frame, self.task_frame)
|
||||
rospy.sleep(0.1) # wait for the transform to be published
|
||||
|
||||
self.tsdf = UniformTSDFVolume(0.3, 40)
|
||||
self.viewpoints = []
|
||||
self.done = False
|
||||
self.best_grasp = None # grasp pose defined w.r.t. the robot's base frame
|
||||
self.best_grasp = None
|
||||
|
||||
self.visualizer.clear()
|
||||
self.visualizer.bbox(bbox)
|
||||
|
||||
def _integrate_latest_image(self):
|
||||
self.viewpoints.append(self.extrinsic.inv())
|
||||
self.tsdf.integrate(
|
||||
self.img,
|
||||
self.intrinsic,
|
||||
self.extrinsic,
|
||||
)
|
||||
self._publish_scene_cloud()
|
||||
def integrate_img(self, img, extrinsic):
|
||||
self.viewpoints.append(extrinsic.inv())
|
||||
self.tsdf.integrate(img, self.intrinsic, extrinsic * self.T_base_task)
|
||||
self.visualizer.scene_cloud(self.task_frame, self.tsdf.get_scene_cloud())
|
||||
self.visualizer.path(self.viewpoints)
|
||||
|
||||
def _publish_scene_cloud(self):
|
||||
cloud = self.tsdf.get_scene_cloud()
|
||||
msg = to_cloud_msg(self.task_frame, np.asarray(cloud.points))
|
||||
self.scene_cloud_pub.publish(msg)
|
||||
|
||||
def _predict_best_grasp(self):
|
||||
def predict_best_grasp(self):
|
||||
tsdf_grid = self.tsdf.get_grid()
|
||||
out = self.vgn.predict(tsdf_grid)
|
||||
score_fn = lambda g: g.pose.translation[2]
|
||||
grasps = compute_grasps(self.tsdf.voxel_size, out, score_fn, max_filter_size=3)
|
||||
grasps = self._select_grasps_on_target_object(grasps)
|
||||
return self.T_B_task * grasps[0].pose if len(grasps) > 0 else None
|
||||
grasps = self.transform_grasps_to_base_frame(grasps)
|
||||
grasps = self.select_grasps_on_target_object(grasps)
|
||||
return grasps[0] if len(grasps) > 0 else None
|
||||
|
||||
def _select_grasps_on_target_object(self, grasps):
|
||||
def transform_grasps_to_base_frame(self, grasps):
|
||||
for grasp in grasps:
|
||||
grasp.pose = self.T_base_task * grasp.pose
|
||||
return grasps
|
||||
|
||||
def select_grasps_on_target_object(self, grasps):
|
||||
result = []
|
||||
for g in grasps:
|
||||
tip = g.pose.rotation.apply([0, 0, 0.05]) + g.pose.translation
|
||||
for grasp in grasps:
|
||||
tip = grasp.pose.rotation.apply([0, 0, 0.05]) + grasp.pose.translation
|
||||
if self.bbox.is_inside(tip):
|
||||
result.append(g)
|
||||
result.append(grasp)
|
||||
return result
|
||||
|
||||
|
||||
@@ -108,8 +87,8 @@ def register(id, cls):
|
||||
registry[id] = cls
|
||||
|
||||
|
||||
def make(id):
|
||||
def make(id, *args, **kwargs):
|
||||
if id in registry:
|
||||
return registry[id]()
|
||||
return registry[id](*args, **kwargs)
|
||||
else:
|
||||
raise ValueError("{} policy does not exist.".format(id))
|
||||
|
Reference in New Issue
Block a user