successfully added ap policy class
This commit is contained in:
55
src/active_grasp/active_perception_policy.py
Normal file
55
src/active_grasp/active_perception_policy.py
Normal file
@@ -0,0 +1,55 @@
|
||||
import itertools
|
||||
from numba import jit
|
||||
import numpy as np
|
||||
import rospy
|
||||
from .policy import MultiViewPolicy
|
||||
from .timer import Timer
|
||||
|
||||
from .active_perception_demo import APInferenceEngine
|
||||
|
||||
|
||||
class ActivePerceptionPolicy(MultiViewPolicy):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.max_views = rospy.get_param("ap_grasp/max_views")
|
||||
self.ap_config_path = rospy.get_param("ap_grasp/ap_config_path")
|
||||
self.ap_inference_engine = APInferenceEngine(self.ap_config_path)
|
||||
|
||||
def activate(self, bbox, view_sphere):
|
||||
super().activate(bbox, view_sphere)
|
||||
|
||||
def update(self, img, x, q):
|
||||
self.depth_image_to_ap_input(img)
|
||||
# if len(self.views) > self.max_views or self.best_grasp_prediction_is_stable():
|
||||
# self.done = True
|
||||
# else:
|
||||
# with Timer("state_update"):
|
||||
# self.integrate(img, x, q)
|
||||
# with Timer("view_generation"):
|
||||
# views = self.generate_views(q)
|
||||
# with Timer("ig_computation"):
|
||||
# gains = [self.ig_fn(v, self.downsample) for v in views]
|
||||
# with Timer("cost_computation"):
|
||||
# costs = [self.cost_fn(v) for v in views]
|
||||
# utilities = gains / np.sum(gains) - costs / np.sum(costs)
|
||||
# self.vis.ig_views(self.base_frame, self.intrinsic, views, utilities)
|
||||
# i = np.argmax(utilities)
|
||||
# nbv, gain = views[i], gains[i]
|
||||
|
||||
# if gain < self.min_gain and len(self.views) > self.T:
|
||||
# self.done = True
|
||||
|
||||
# self.x_d = nbv
|
||||
|
||||
def depth_image_to_ap_input(self, depth_img):
|
||||
print(self.intrinsic.K)
|
||||
|
||||
def best_grasp_prediction_is_stable(self):
|
||||
if self.best_grasp:
|
||||
t = (self.T_task_base * self.best_grasp.pose).translation
|
||||
i, j, k = (t / self.tsdf.voxel_size).astype(int)
|
||||
qs = self.qual_hist[:, i, j, k]
|
||||
if np.count_nonzero(qs) == self.T and np.mean(qs) > 0.9:
|
||||
return True
|
||||
return False
|
||||
|
Reference in New Issue
Block a user