Minor
This commit is contained in:
@@ -4,7 +4,7 @@ from pathlib import Path
|
||||
import rospy
|
||||
|
||||
from .timer import Timer
|
||||
from .visualization import Visualizer
|
||||
from .rviz import Visualizer
|
||||
from robot_helpers.model import KDLModel
|
||||
from robot_helpers.ros import tf
|
||||
from robot_helpers.ros.conversions import *
|
||||
@@ -62,36 +62,33 @@ class Policy:
|
||||
self.T_task_base = self.T_base_task.inv()
|
||||
tf.broadcast(self.T_base_task, self.base_frame, self.task_frame)
|
||||
rospy.sleep(1.0) # Wait for tf tree to be updated
|
||||
self.vis.workspace(self.task_frame, 0.3)
|
||||
|
||||
def update(self, img, x, q):
|
||||
raise NotImplementedError
|
||||
|
||||
def sort_grasps(self, in_grasps, q):
|
||||
# Transforms grasps into base frame, checks whether they lie on the target, and sorts by their score
|
||||
grasps, scores = [], []
|
||||
|
||||
for grasp in in_grasps:
|
||||
def sort_grasps(self, grasps, qualities, q):
|
||||
"""
|
||||
1. Transform grasp configurations into base_frame
|
||||
2. Check whether the finger tips lie within the bounding box
|
||||
3. Remove grasps for which no IK solution was found
|
||||
4. Sort grasps according to score_fn
|
||||
"""
|
||||
filtered_grasps, scores = [], []
|
||||
for grasp, quality in zip(grasps, qualities):
|
||||
pose = self.T_base_task * grasp.pose
|
||||
R, t = pose.rotation, pose.translation
|
||||
tip = pose.rotation.apply([0, 0, 0.05]) + pose.translation
|
||||
|
||||
# Filter out artifacts close to the support
|
||||
if t[2] < self.bbox.min[2] + 0.05 or tip[2] < self.bbox.min[2] + 0.02:
|
||||
continue
|
||||
|
||||
if self.bbox.is_inside(tip):
|
||||
grasp.pose = pose
|
||||
q_grasp = self.ee_model.ik(q, pose * self.T_grasp_ee)
|
||||
if q_grasp is not None:
|
||||
grasps.append(grasp)
|
||||
scores.append(self.score_fn(grasp, q, q_grasp))
|
||||
filtered_grasps.append(grasp)
|
||||
scores.append(self.score_fn(grasp, quality, q, q_grasp))
|
||||
filtered_grasps, scores = np.asarray(filtered_grasps), np.asarray(scores)
|
||||
i = np.argsort(-scores)
|
||||
return filtered_grasps[i], qualities[i], scores[i]
|
||||
|
||||
grasps, scores = np.asarray(grasps), np.asarray(scores)
|
||||
indices = np.argsort(-scores)
|
||||
return grasps[indices], scores[indices]
|
||||
|
||||
def score_fn(self, grasp, q, q_grasp):
|
||||
def score_fn(self, grasp, quality, q, q_grasp):
|
||||
return -np.linalg.norm(q - q_grasp)
|
||||
|
||||
|
||||
@@ -108,8 +105,8 @@ class SingleViewPolicy(Policy):
|
||||
out = self.vgn.predict(tsdf_grid)
|
||||
self.vis.quality(self.task_frame, voxel_size, out.qual, 0.5)
|
||||
|
||||
grasps = select_grid(voxel_size, out, threshold=self.qual_threshold)
|
||||
grasps, _ = self.sort_grasps(grasps, q)
|
||||
grasps, qualities = select_grid(voxel_size, out, self.qual_threshold)
|
||||
grasps, _ = self.sort_grasps(grasps, qualities, q)
|
||||
|
||||
if len(grasps) > 0:
|
||||
self.best_grasp = grasps[0]
|
||||
@@ -143,17 +140,16 @@ class MultiViewPolicy(Policy):
|
||||
self.qual_hist[t, ...] = out.qual
|
||||
|
||||
with Timer("grasp_selection"):
|
||||
grasps = select_grid(voxel_size, out, threshold=self.qual_threshold)
|
||||
grasps, _ = self.sort_grasps(grasps, q)
|
||||
|
||||
self.vis.clear_grasps()
|
||||
grasps, qualities = select_grid(voxel_size, out, self.qual_threshold)
|
||||
grasps, qualities, _ = self.sort_grasps(grasps, qualities, q)
|
||||
|
||||
if len(grasps) > 0:
|
||||
self.best_grasp = grasps[0]
|
||||
self.vis.grasps(self.base_frame, grasps)
|
||||
self.vis.best_grasp(self.base_frame, self.best_grasp)
|
||||
# self.vis.grasps(self.base_frame, grasps, qualities)
|
||||
self.vis.grasp(self.base_frame, self.best_grasp, qualities[0])
|
||||
else:
|
||||
self.best_grasp = None
|
||||
self.vis.clear_grasp()
|
||||
|
||||
|
||||
def compute_error(x_d, x):
|
||||
|
143
src/active_grasp/rviz.py
Normal file
143
src/active_grasp/rviz.py
Normal file
@@ -0,0 +1,143 @@
|
||||
import numpy as np
|
||||
|
||||
from robot_helpers.ros.rviz import *
|
||||
from robot_helpers.spatial import Transform
|
||||
import vgn.rviz
|
||||
|
||||
cm = lambda s: tuple([float(1 - s), float(s), float(0)])
|
||||
red = np.r_[1.0, 0.0, 0.0]
|
||||
blue = np.r_[0, 0.6, 1.0]
|
||||
|
||||
|
||||
class Visualizer(vgn.rviz.Visualizer):
|
||||
def bbox(self, frame, bbox):
|
||||
pose = Transform.identity()
|
||||
scale = [0.004, 0.0, 0.0]
|
||||
color = red
|
||||
corners = bbox.corners
|
||||
edges = [
|
||||
(0, 1),
|
||||
(1, 3),
|
||||
(3, 2),
|
||||
(2, 0),
|
||||
(4, 5),
|
||||
(5, 7),
|
||||
(7, 6),
|
||||
(6, 4),
|
||||
(0, 4),
|
||||
(1, 5),
|
||||
(3, 7),
|
||||
(2, 6),
|
||||
]
|
||||
lines = [(corners[s], corners[e]) for s, e in edges]
|
||||
marker = create_line_list_marker(frame, pose, scale, color, lines, "bbox")
|
||||
self.draw([marker])
|
||||
|
||||
def rays(self, frame, origin, directions, t_max=1.0):
|
||||
lines = [[origin, origin + t_max * direction] for direction in directions]
|
||||
marker = create_line_list_marker(
|
||||
frame,
|
||||
Transform.identity(),
|
||||
[0.001, 0.0, 0.0],
|
||||
[0.9, 0.9, 0.9],
|
||||
lines,
|
||||
"rays",
|
||||
)
|
||||
self.draw([marker])
|
||||
|
||||
def path(self, frame, poses):
|
||||
color = blue
|
||||
points = [p.translation for p in poses]
|
||||
spheres = create_sphere_list_marker(
|
||||
frame,
|
||||
Transform.identity(),
|
||||
np.full(3, 0.01),
|
||||
color,
|
||||
points,
|
||||
"path",
|
||||
0,
|
||||
)
|
||||
markers = [spheres]
|
||||
if len(poses) > 1:
|
||||
lines = create_line_strip_marker(
|
||||
frame,
|
||||
Transform.identity(),
|
||||
[0.005, 0.0, 0.0],
|
||||
color,
|
||||
points,
|
||||
"path",
|
||||
1,
|
||||
)
|
||||
markers.append(lines)
|
||||
self.draw(markers)
|
||||
|
||||
def point(self, frame, point):
|
||||
marker = create_sphere_marker(
|
||||
frame,
|
||||
Transform.translation(point),
|
||||
np.full(3, 0.01),
|
||||
[0, 0, 1],
|
||||
"point",
|
||||
)
|
||||
self.draw([marker])
|
||||
|
||||
def views(self, frame, intrinsic, views, values):
|
||||
vmin, vmax = min(values), max(values)
|
||||
scale = [0.002, 0.0, 0.0]
|
||||
near, far = 0.0, 0.02
|
||||
markers = []
|
||||
for i, (view, value) in enumerate(zip(views, values)):
|
||||
color = cm((value - vmin) / (vmax - vmin))
|
||||
marker = create_cam_view_marker(
|
||||
frame,
|
||||
view,
|
||||
scale,
|
||||
color,
|
||||
intrinsic,
|
||||
near,
|
||||
far,
|
||||
ns="views",
|
||||
id=i,
|
||||
)
|
||||
markers.append(marker)
|
||||
self.draw(markers)
|
||||
|
||||
|
||||
def create_cam_view_marker(
|
||||
frame, pose, scale, color, intrinsic, near, far, ns="", id=0
|
||||
):
|
||||
marker = create_marker(Marker.LINE_LIST, frame, pose, scale, color, ns, id)
|
||||
x_n = near * intrinsic.width / (2.0 * intrinsic.fx)
|
||||
y_n = near * intrinsic.height / (2.0 * intrinsic.fy)
|
||||
z_n = near
|
||||
x_f = far * intrinsic.width / (2.0 * intrinsic.fx)
|
||||
y_f = far * intrinsic.height / (2.0 * intrinsic.fy)
|
||||
z_f = far
|
||||
points = [
|
||||
[x_n, y_n, z_n],
|
||||
[-x_n, y_n, z_n],
|
||||
[-x_n, y_n, z_n],
|
||||
[-x_n, -y_n, z_n],
|
||||
[-x_n, -y_n, z_n],
|
||||
[x_n, -y_n, z_n],
|
||||
[x_n, -y_n, z_n],
|
||||
[x_n, y_n, z_n],
|
||||
[x_f, y_f, z_f],
|
||||
[-x_f, y_f, z_f],
|
||||
[-x_f, y_f, z_f],
|
||||
[-x_f, -y_f, z_f],
|
||||
[-x_f, -y_f, z_f],
|
||||
[x_f, -y_f, z_f],
|
||||
[x_f, -y_f, z_f],
|
||||
[x_f, y_f, z_f],
|
||||
[x_n, y_n, z_n],
|
||||
[x_f, y_f, z_f],
|
||||
[-x_n, y_n, z_n],
|
||||
[-x_f, y_f, z_f],
|
||||
[-x_n, -y_n, z_n],
|
||||
[-x_f, -y_f, z_f],
|
||||
[x_n, -y_n, z_n],
|
||||
[x_f, -y_f, z_f],
|
||||
]
|
||||
marker.points = [to_point_msg(p) for p in points]
|
||||
return marker
|
@@ -1,244 +0,0 @@
|
||||
from geometry_msgs.msg import PoseStamped
|
||||
import matplotlib.colors
|
||||
import numpy as np
|
||||
import rospy
|
||||
|
||||
from robot_helpers.ros.rviz import *
|
||||
from robot_helpers.spatial import Transform
|
||||
from vgn.utils import *
|
||||
|
||||
cmap = matplotlib.colors.LinearSegmentedColormap.from_list("RedGreen", ["r", "g"])
|
||||
red = np.r_[1.0, 0.0, 0.0]
|
||||
blue = np.r_[0, 0.6, 1.0]
|
||||
|
||||
|
||||
class Visualizer:
|
||||
def __init__(self, topic="visualization_marker_array"):
|
||||
self.marker_pub = rospy.Publisher(topic, MarkerArray, queue_size=1)
|
||||
self.scene_cloud_pub = rospy.Publisher(
|
||||
"scene_cloud",
|
||||
PointCloud2,
|
||||
latch=True,
|
||||
queue_size=1,
|
||||
)
|
||||
self.map_cloud_pub = rospy.Publisher(
|
||||
"map_cloud",
|
||||
PointCloud2,
|
||||
latch=True,
|
||||
queue_size=1,
|
||||
)
|
||||
self.pose_pub = rospy.Publisher("pose", PoseStamped, queue_size=1)
|
||||
self.quality_pub = rospy.Publisher("quality", PointCloud2, queue_size=1)
|
||||
|
||||
self.grasp_marker_count = 0
|
||||
|
||||
def clear(self):
|
||||
self.clear_markers()
|
||||
msg = to_cloud_msg("panda_link0", np.array([]))
|
||||
self.scene_cloud_pub.publish(msg)
|
||||
self.map_cloud_pub.publish(msg)
|
||||
self.quality_pub.publish(msg)
|
||||
rospy.sleep(0.1)
|
||||
|
||||
def clear_markers(self):
|
||||
self.draw([Marker(action=Marker.DELETEALL)])
|
||||
|
||||
def draw(self, markers):
|
||||
self.marker_pub.publish(MarkerArray(markers=markers))
|
||||
|
||||
def bbox(self, frame, bbox):
|
||||
pose = Transform.identity()
|
||||
scale = [0.004, 0.0, 0.0]
|
||||
color = red
|
||||
corners = bbox.corners
|
||||
edges = [
|
||||
(0, 1),
|
||||
(1, 3),
|
||||
(3, 2),
|
||||
(2, 0),
|
||||
(4, 5),
|
||||
(5, 7),
|
||||
(7, 6),
|
||||
(6, 4),
|
||||
(0, 4),
|
||||
(1, 5),
|
||||
(3, 7),
|
||||
(2, 6),
|
||||
]
|
||||
lines = [(corners[s], corners[e]) for s, e in edges]
|
||||
marker = create_line_list_marker(frame, pose, scale, color, lines, ns="bbox")
|
||||
self.draw([marker])
|
||||
|
||||
def best_grasp(self, frame, grasp, qmin=0.5, qmax=1.0):
|
||||
color = cmap((grasp.quality - qmin) / (qmax - qmin))
|
||||
self.draw(create_grasp_markers(frame, grasp, color, "best_grasp", radius=0.006))
|
||||
|
||||
def grasps(self, frame, grasps, qmin=0.5, qmax=1.0):
|
||||
markers = []
|
||||
for i, grasp in enumerate(grasps):
|
||||
color = cmap((grasp.quality - qmin) / (qmax - qmin))
|
||||
markers += create_grasp_markers(frame, grasp, color, "grasps", 4 * i)
|
||||
self.grasp_marker_count = len(markers)
|
||||
self.draw(markers)
|
||||
|
||||
def clear_grasps(self):
|
||||
if self.grasp_marker_count > 0:
|
||||
markers = [
|
||||
Marker(action=Marker.DELETE, ns="grasps", id=i)
|
||||
for i in range(self.grasp_marker_count)
|
||||
]
|
||||
markers += [
|
||||
Marker(action=Marker.DELETE, ns="best_grasp", id=i) for i in range(4)
|
||||
]
|
||||
self.draw(markers)
|
||||
self.grasp_marker_count = 0
|
||||
|
||||
def rays(self, frame, origin, directions, t_max=1.0):
|
||||
lines = [[origin, origin + t_max * direction] for direction in directions]
|
||||
marker = create_line_list_marker(
|
||||
frame,
|
||||
Transform.identity(),
|
||||
[0.001, 0.0, 0.0],
|
||||
[0.9, 0.9, 0.9],
|
||||
lines,
|
||||
"rays",
|
||||
)
|
||||
self.draw([marker])
|
||||
|
||||
def map_cloud(self, frame, cloud):
|
||||
points = np.asarray(cloud.points)
|
||||
distances = np.expand_dims(np.asarray(cloud.colors)[:, 0], 1)
|
||||
msg = to_cloud_msg(frame, points, distances=distances)
|
||||
self.map_cloud_pub.publish(msg)
|
||||
|
||||
def path(self, frame, poses):
|
||||
color = blue
|
||||
points = [p.translation for p in poses]
|
||||
spheres = create_sphere_list_marker(
|
||||
frame,
|
||||
Transform.identity(),
|
||||
np.full(3, 0.01),
|
||||
color,
|
||||
points,
|
||||
"path",
|
||||
0,
|
||||
)
|
||||
markers = [spheres]
|
||||
if len(poses) > 1:
|
||||
lines = create_line_strip_marker(
|
||||
frame,
|
||||
Transform.identity(),
|
||||
[0.005, 0.0, 0.0],
|
||||
color,
|
||||
points,
|
||||
"path",
|
||||
1,
|
||||
)
|
||||
markers.append(lines)
|
||||
self.draw(markers)
|
||||
|
||||
def point(self, frame, point):
|
||||
marker = create_sphere_marker(
|
||||
frame,
|
||||
Transform.translation(point),
|
||||
np.full(3, 0.01),
|
||||
[0, 0, 1],
|
||||
"point",
|
||||
)
|
||||
self.draw([marker])
|
||||
|
||||
def pose(self, frame, pose):
|
||||
msg = to_pose_stamped_msg(pose, frame)
|
||||
self.pose_pub.publish(msg)
|
||||
|
||||
def quality(self, frame, voxel_size, quality, threshold=0.9):
|
||||
points, values = grid_to_map_cloud(voxel_size, quality, threshold)
|
||||
msg = to_cloud_msg(frame, points, intensities=values)
|
||||
self.quality_pub.publish(msg)
|
||||
|
||||
def scene_cloud(self, frame, cloud):
|
||||
msg = to_cloud_msg(frame, np.asarray(cloud.points))
|
||||
self.scene_cloud_pub.publish(msg)
|
||||
|
||||
def views(self, frame, intrinsic, views, values):
|
||||
vmin, vmax = min(values), max(values)
|
||||
scale = [0.002, 0.0, 0.0]
|
||||
near, far = 0.0, 0.02
|
||||
markers = []
|
||||
for i, (view, value) in enumerate(zip(views, values)):
|
||||
color = cmap((value - vmin) / (vmax - vmin))
|
||||
marker = create_cam_view_marker(
|
||||
frame,
|
||||
view,
|
||||
scale,
|
||||
color,
|
||||
intrinsic,
|
||||
near,
|
||||
far,
|
||||
ns="views",
|
||||
id=i,
|
||||
)
|
||||
markers.append(marker)
|
||||
self.draw(markers)
|
||||
|
||||
def workspace(self, frame, size):
|
||||
scale = size * 0.005
|
||||
pose = Transform.identity()
|
||||
scale = [scale, 0.0, 0.0]
|
||||
color = [0.5, 0.5, 0.5]
|
||||
lines = [
|
||||
([0.0, 0.0, 0.0], [size, 0.0, 0.0]),
|
||||
([size, 0.0, 0.0], [size, size, 0.0]),
|
||||
([size, size, 0.0], [0.0, size, 0.0]),
|
||||
([0.0, size, 0.0], [0.0, 0.0, 0.0]),
|
||||
([0.0, 0.0, size], [size, 0.0, size]),
|
||||
([size, 0.0, size], [size, size, size]),
|
||||
([size, size, size], [0.0, size, size]),
|
||||
([0.0, size, size], [0.0, 0.0, size]),
|
||||
([0.0, 0.0, 0.0], [0.0, 0.0, size]),
|
||||
([size, 0.0, 0.0], [size, 0.0, size]),
|
||||
([size, size, 0.0], [size, size, size]),
|
||||
([0.0, size, 0.0], [0.0, size, size]),
|
||||
]
|
||||
msg = create_line_list_marker(frame, pose, scale, color, lines, ns="workspace")
|
||||
self.draw([msg])
|
||||
|
||||
|
||||
def create_cam_view_marker(
|
||||
frame, pose, scale, color, intrinsic, near, far, ns="", id=0
|
||||
):
|
||||
marker = create_marker(Marker.LINE_LIST, frame, pose, scale, color, ns, id)
|
||||
x_n = near * intrinsic.width / (2.0 * intrinsic.fx)
|
||||
y_n = near * intrinsic.height / (2.0 * intrinsic.fy)
|
||||
z_n = near
|
||||
x_f = far * intrinsic.width / (2.0 * intrinsic.fx)
|
||||
y_f = far * intrinsic.height / (2.0 * intrinsic.fy)
|
||||
z_f = far
|
||||
points = [
|
||||
[x_n, y_n, z_n],
|
||||
[-x_n, y_n, z_n],
|
||||
[-x_n, y_n, z_n],
|
||||
[-x_n, -y_n, z_n],
|
||||
[-x_n, -y_n, z_n],
|
||||
[x_n, -y_n, z_n],
|
||||
[x_n, -y_n, z_n],
|
||||
[x_n, y_n, z_n],
|
||||
[x_f, y_f, z_f],
|
||||
[-x_f, y_f, z_f],
|
||||
[-x_f, y_f, z_f],
|
||||
[-x_f, -y_f, z_f],
|
||||
[-x_f, -y_f, z_f],
|
||||
[x_f, -y_f, z_f],
|
||||
[x_f, -y_f, z_f],
|
||||
[x_f, y_f, z_f],
|
||||
[x_n, y_n, z_n],
|
||||
[x_f, y_f, z_f],
|
||||
[-x_n, y_n, z_n],
|
||||
[-x_f, y_f, z_f],
|
||||
[-x_n, -y_n, z_n],
|
||||
[-x_f, -y_f, z_f],
|
||||
[x_n, -y_n, z_n],
|
||||
[x_f, -y_f, z_f],
|
||||
]
|
||||
marker.points = [to_point_msg(p) for p in points]
|
||||
return marker
|
Reference in New Issue
Block a user