Switch to velocity control

This commit is contained in:
Michel Breyer
2021-09-03 22:39:17 +02:00
parent 81588a1075
commit b4f68e78cc
7 changed files with 83 additions and 96 deletions

View File

@@ -1,5 +1,4 @@
import numpy as np
from numpy.core.fromnumeric import sort
from sensor_msgs.msg import CameraInfo
from pathlib import Path
import rospy
@@ -19,9 +18,13 @@ class Policy:
self.init_visualizer()
def load_parameters(self):
self.base_frame = rospy.get_param("active_grasp/base_frame_id")
self.base_frame = rospy.get_param("~base_frame_id")
info_topic = rospy.get_param("~camera/info_topic")
self.linear_vel = rospy.get_param("~linear_vel")
self.min_z_dist = rospy.get_param("~camera/min_z_dist")
self.qual_threshold = rospy.get_param("~qual_threshold")
self.task_frame = "task"
info_topic = rospy.get_param("active_grasp/camera/info_topic")
msg = rospy.wait_for_message(info_topic, CameraInfo, rospy.Duration(2.0))
self.intrinsic = from_camera_info_msg(msg)
@@ -30,15 +33,11 @@ class Policy:
def activate(self, bbox):
self.bbox = bbox
self.calibrate_task_frame()
self.vis.clear()
self.vis.bbox(self.base_frame, bbox)
self.tsdf = UniformTSDFVolume(0.3, 40)
self.vgn = VGN(Path(rospy.get_param("vgn/model")))
self.views = []
self.best_grasp = None
self.done = False
@@ -50,6 +49,15 @@ class Policy:
tf.broadcast(self.T_base_task, self.base_frame, self.task_frame)
rospy.sleep(0.1)
def compute_error(self, x_d, x):
linear = x_d.translation - x.translation
angular = (x_d.rotation * x.rotation.inv()).as_rotvec()
return linear, angular
def compute_velocity_cmd(self, linear, angular):
linear = linear / np.linalg.norm(linear) * self.linear_vel
return np.r_[linear, angular]
def sort_grasps(self, in_grasps):
# Transforms grasps into base frame, checks whether they lie on the target, and sorts by their score
grasps, scores = [], []
@@ -68,20 +76,19 @@ class Policy:
def score_fn(self, grasp):
return grasp.quality
# return grasp.pose.translation[2]
def update(sekf, img, extrinsic):
def update(self, img, pose):
raise NotImplementedError
class SingleViewPolicy(Policy):
def update(self, img, extrinsic):
error = extrinsic.translation - self.target.translation
def update(self, img, x):
linear, angular = self.compute_error(self.x_d, x)
if np.linalg.norm(error) < 0.01:
self.views.append(extrinsic.inv())
if np.linalg.norm(linear) < 0.01:
self.views.append(x)
self.tsdf.integrate(img, self.intrinsic, extrinsic * self.T_base_task)
self.tsdf.integrate(img, self.intrinsic, x.inv() * self.T_base_task)
tsdf_grid, voxel_size = self.tsdf.get_grid(), self.tsdf.voxel_size
self.vis.scene_cloud(self.task_frame, self.tsdf.get_scene_cloud())
self.vis.map_cloud(self.task_frame, self.tsdf.get_map_cloud())
@@ -89,7 +96,7 @@ class SingleViewPolicy(Policy):
out = self.vgn.predict(tsdf_grid)
self.vis.quality(self.task_frame, voxel_size, out.qual)
grasps = select_grid(voxel_size, out, threshold=0.90)
grasps = select_grid(voxel_size, out, threshold=self.qual_threshold)
grasps, scores = self.sort_grasps(grasps)
self.vis.grasps(self.base_frame, grasps, scores)
@@ -97,13 +104,13 @@ class SingleViewPolicy(Policy):
self.best_grasp = grasps[0] if len(grasps) > 0 else None
self.done = True
else:
return self.target
return self.compute_velocity_cmd(linear, angular)
class MultiViewPolicy(Policy):
def integrate(self, img, extrinsic):
self.views.append(extrinsic.inv())
self.tsdf.integrate(img, self.intrinsic, extrinsic * self.T_base_task)
def integrate(self, img, x):
self.views.append(x)
self.tsdf.integrate(img, self.intrinsic, x.inv() * self.T_base_task)
self.vis.scene_cloud(self.task_frame, self.tsdf.get_scene_cloud())
self.vis.map_cloud(self.task_frame, self.tsdf.get_map_cloud())
@@ -112,7 +119,7 @@ class MultiViewPolicy(Policy):
tsdf_grid, voxel_size = self.tsdf.get_grid(), self.tsdf.voxel_size
out = self.vgn.predict(tsdf_grid)
grasps = select_grid(voxel_size, out, threshold=0.90)
grasps = select_grid(voxel_size, out, threshold=self.qual_threshold)
grasps, scores = self.sort_grasps(grasps)
if len(grasps) > 0: